巴厘传统雕刻饰品图像分类新数据集的基准测试

M. W. A. Kesiman, I. G. M. Darmawiguna, I. G. R. M. Putra, Ni Luh Putu Kurniawati
{"title":"巴厘传统雕刻饰品图像分类新数据集的基准测试","authors":"M. W. A. Kesiman, I. G. M. Darmawiguna, I. G. R. M. Putra, Ni Luh Putu Kurniawati","doi":"10.4108/eai.27-11-2021.2315534","DOIUrl":null,"url":null,"abstract":"In the framework of the development of an automatic Balinese carving ornament recognition application, a valid image dataset is needed. This paper describes the improved new dataset of traditional Balinese carving ornaments and presents the benchmarking results in an image classification task. The improvement of the new dataset involves the increased number of image samples and involves the validation and addition of the number of ornament classes. Some frequently used feature extraction methods, for example, Gabor Filter, Zoning, Histogram of Gradient, Neighborhood Pixels Weights, and Kirsch edge, were tested to benchmark the image classification task for this new dataset. The benchmark results showed that this new dataset has a fairly high technical challenge for feature extraction methods in the pattern recognition field. The new proposed dataset will support further research steps in building a classification and recognition system for Balinese carving ornaments.","PeriodicalId":246168,"journal":{"name":"Proceedings of the 4th International Conference on Vocational Education and Technology, IConVET 2021, 27 November 2021, Singaraja, Bali, Indonesia","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Benchmarking a New Dataset of Traditional Balinese Carving Ornaments for Image Classification Task\",\"authors\":\"M. W. A. Kesiman, I. G. M. Darmawiguna, I. G. R. M. Putra, Ni Luh Putu Kurniawati\",\"doi\":\"10.4108/eai.27-11-2021.2315534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of the development of an automatic Balinese carving ornament recognition application, a valid image dataset is needed. This paper describes the improved new dataset of traditional Balinese carving ornaments and presents the benchmarking results in an image classification task. The improvement of the new dataset involves the increased number of image samples and involves the validation and addition of the number of ornament classes. Some frequently used feature extraction methods, for example, Gabor Filter, Zoning, Histogram of Gradient, Neighborhood Pixels Weights, and Kirsch edge, were tested to benchmark the image classification task for this new dataset. The benchmark results showed that this new dataset has a fairly high technical challenge for feature extraction methods in the pattern recognition field. The new proposed dataset will support further research steps in building a classification and recognition system for Balinese carving ornaments.\",\"PeriodicalId\":246168,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Vocational Education and Technology, IConVET 2021, 27 November 2021, Singaraja, Bali, Indonesia\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Vocational Education and Technology, IConVET 2021, 27 November 2021, Singaraja, Bali, Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.27-11-2021.2315534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Vocational Education and Technology, IConVET 2021, 27 November 2021, Singaraja, Bali, Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.27-11-2021.2315534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在开发巴厘雕刻饰品自动识别应用程序的框架中,需要一个有效的图像数据集。本文描述了改进后的巴厘传统雕刻饰品新数据集,并给出了图像分类任务的基准测试结果。新数据集的改进涉及到图像样本数量的增加,以及装饰类数量的验证和添加。对Gabor Filter、Zoning、直方图梯度、邻域像素权重、Kirsch edge等常用的特征提取方法进行了测试,对该新数据集的图像分类任务进行了基准测试。基准测试结果表明,该新数据集对模式识别领域的特征提取方法提出了相当高的技术挑战。新提议的数据集将支持进一步的研究步骤,以建立巴厘岛雕刻饰品的分类和识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking a New Dataset of Traditional Balinese Carving Ornaments for Image Classification Task
In the framework of the development of an automatic Balinese carving ornament recognition application, a valid image dataset is needed. This paper describes the improved new dataset of traditional Balinese carving ornaments and presents the benchmarking results in an image classification task. The improvement of the new dataset involves the increased number of image samples and involves the validation and addition of the number of ornament classes. Some frequently used feature extraction methods, for example, Gabor Filter, Zoning, Histogram of Gradient, Neighborhood Pixels Weights, and Kirsch edge, were tested to benchmark the image classification task for this new dataset. The benchmark results showed that this new dataset has a fairly high technical challenge for feature extraction methods in the pattern recognition field. The new proposed dataset will support further research steps in building a classification and recognition system for Balinese carving ornaments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信