{"title":"一种描述泡沫性能的博德纳型材料模型","authors":"Yuzhao Song, Ziqi Chen","doi":"10.1115/imece2001/ad-23769","DOIUrl":null,"url":null,"abstract":"\n A unified constitutive equation has been used to represent Foam material. It can describe the large compression strain, compression strain rate, tension strain and the bottom out behavior of various foams. The material has been incorporated into LS-DYNA, an explicit finite element code widely used in the automobile industry. An example is given to show an application of the material model in a low speed impact finite element analysis.","PeriodicalId":136170,"journal":{"name":"Contemporary Research in Engineering Mechanics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bodner Type of Material Model for the Description of Foam Properties\",\"authors\":\"Yuzhao Song, Ziqi Chen\",\"doi\":\"10.1115/imece2001/ad-23769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A unified constitutive equation has been used to represent Foam material. It can describe the large compression strain, compression strain rate, tension strain and the bottom out behavior of various foams. The material has been incorporated into LS-DYNA, an explicit finite element code widely used in the automobile industry. An example is given to show an application of the material model in a low speed impact finite element analysis.\",\"PeriodicalId\":136170,\"journal\":{\"name\":\"Contemporary Research in Engineering Mechanics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Research in Engineering Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/ad-23769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Research in Engineering Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/ad-23769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Bodner Type of Material Model for the Description of Foam Properties
A unified constitutive equation has been used to represent Foam material. It can describe the large compression strain, compression strain rate, tension strain and the bottom out behavior of various foams. The material has been incorporated into LS-DYNA, an explicit finite element code widely used in the automobile industry. An example is given to show an application of the material model in a low speed impact finite element analysis.