统一突触-神经元架构的设计与VLSI实现

H. Djahanshahi, M. Ahmadi, G. Jullien, W. Miller
{"title":"统一突触-神经元架构的设计与VLSI实现","authors":"H. Djahanshahi, M. Ahmadi, G. Jullien, W. Miller","doi":"10.1109/GLSV.1996.497624","DOIUrl":null,"url":null,"abstract":"We describe the design and VLSI implementation of a unified synapse-neuron architecture for multi-layer neural networks. A new hybrid building block proposed for this purpose is formed by integrating a partial S-shape neural nonlinearity within a Multiplying DAC synapse. MDAC synapse contains modifications to simplify sign-bit circuit. Small analog circuits generate a distributed S-shape neural function by combining quadratic characteristics of four MOS transistors. The proposed modular neural network architecture features design simplicity and scalability, area efficiency, reduced interconnection problem, improved robustness and digital programmability. Based on the proposed scheme, we have considerably increased the synaptic density in the improved version of a programmable optically-coupled neural network.","PeriodicalId":191171,"journal":{"name":"Proceedings of the Sixth Great Lakes Symposium on VLSI","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Design and VLSI implementation of a unified synapse-neuron architecture\",\"authors\":\"H. Djahanshahi, M. Ahmadi, G. Jullien, W. Miller\",\"doi\":\"10.1109/GLSV.1996.497624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the design and VLSI implementation of a unified synapse-neuron architecture for multi-layer neural networks. A new hybrid building block proposed for this purpose is formed by integrating a partial S-shape neural nonlinearity within a Multiplying DAC synapse. MDAC synapse contains modifications to simplify sign-bit circuit. Small analog circuits generate a distributed S-shape neural function by combining quadratic characteristics of four MOS transistors. The proposed modular neural network architecture features design simplicity and scalability, area efficiency, reduced interconnection problem, improved robustness and digital programmability. Based on the proposed scheme, we have considerably increased the synaptic density in the improved version of a programmable optically-coupled neural network.\",\"PeriodicalId\":191171,\"journal\":{\"name\":\"Proceedings of the Sixth Great Lakes Symposium on VLSI\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLSV.1996.497624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLSV.1996.497624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们描述了用于多层神经网络的统一突触-神经元架构的设计和VLSI实现。为此提出了一种新的混合构建块,通过在乘法DAC突触内集成部分s形神经非线性而形成。MDAC突触包含简化符号位电路的修改。小型模拟电路结合4个MOS晶体管的二次特性生成分布式s形神经函数。所提出的模块化神经网络架构具有设计简单和可扩展性、面积效率、减少互连问题、提高鲁棒性和数字可编程性等特点。基于所提出的方案,我们在可编程光耦合神经网络的改进版本中大大增加了突触密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and VLSI implementation of a unified synapse-neuron architecture
We describe the design and VLSI implementation of a unified synapse-neuron architecture for multi-layer neural networks. A new hybrid building block proposed for this purpose is formed by integrating a partial S-shape neural nonlinearity within a Multiplying DAC synapse. MDAC synapse contains modifications to simplify sign-bit circuit. Small analog circuits generate a distributed S-shape neural function by combining quadratic characteristics of four MOS transistors. The proposed modular neural network architecture features design simplicity and scalability, area efficiency, reduced interconnection problem, improved robustness and digital programmability. Based on the proposed scheme, we have considerably increased the synaptic density in the improved version of a programmable optically-coupled neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信