协调多点系统中光线追踪无线信道建模与验证

M. Amro, M. Landolsi, S. Zummo, M. Grieger, Martin Danneberg, G. Fettweis
{"title":"协调多点系统中光线追踪无线信道建模与验证","authors":"M. Amro, M. Landolsi, S. Zummo, M. Grieger, Martin Danneberg, G. Fettweis","doi":"10.1109/WIOPT.2014.6850273","DOIUrl":null,"url":null,"abstract":"Coordinated Multi-Point (CoMP) Multiple Input Multiple Output (MIMO) transmission improves user's coverage and data throughput particularly on the cell edges. To make full advantage of CoMP, radio planning tools need very accurate models that fully capture the MIMO channels characteristics. This paper presents detailed modeling and analysis of an uplink CoMP system using Ray-Tracing (RT)-based channel modeling. The contribution of this paper is to show how close RT simulations can predict end-to-end system performance compared to the real-world measured performance. Thorough drive test measurements and RT simulations were performed. CoMP and Conventional MIMO systems performances are evaluated and compared for measured and RT-simulated channels. The results of several scenarios show that the RT matches the measurements in terms of rates and geometrical properties. The CoMP gain resulting from the measurements is almost double the gain of RT simulations. The differences come from the hardware and the RT 3D models impairments.","PeriodicalId":381489,"journal":{"name":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ray-tracing wireless channel modeling and verification in Coordinated Multi-Point systems\",\"authors\":\"M. Amro, M. Landolsi, S. Zummo, M. Grieger, Martin Danneberg, G. Fettweis\",\"doi\":\"10.1109/WIOPT.2014.6850273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coordinated Multi-Point (CoMP) Multiple Input Multiple Output (MIMO) transmission improves user's coverage and data throughput particularly on the cell edges. To make full advantage of CoMP, radio planning tools need very accurate models that fully capture the MIMO channels characteristics. This paper presents detailed modeling and analysis of an uplink CoMP system using Ray-Tracing (RT)-based channel modeling. The contribution of this paper is to show how close RT simulations can predict end-to-end system performance compared to the real-world measured performance. Thorough drive test measurements and RT simulations were performed. CoMP and Conventional MIMO systems performances are evaluated and compared for measured and RT-simulated channels. The results of several scenarios show that the RT matches the measurements in terms of rates and geometrical properties. The CoMP gain resulting from the measurements is almost double the gain of RT simulations. The differences come from the hardware and the RT 3D models impairments.\",\"PeriodicalId\":381489,\"journal\":{\"name\":\"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIOPT.2014.6850273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIOPT.2014.6850273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

协调多点(CoMP)多输入多输出(MIMO)传输提高了用户的覆盖范围和数据吞吐量,特别是在小区边缘。为了充分利用CoMP,无线电规划工具需要非常精确的模型来充分捕捉MIMO信道特性。本文采用基于光线追踪(RT)的信道建模方法对上行CoMP系统进行了详细的建模和分析。本文的贡献在于展示了与实际测量的性能相比,RT模拟可以多么接近地预测端到端系统性能。进行了全面的驾驶测试测量和RT模拟。对CoMP和传统MIMO系统的性能进行了评估和比较,以测量和rt模拟信道。几个场景的结果表明,RT在速率和几何性质方面与测量结果相匹配。测量得到的CoMP增益几乎是RT模拟的两倍。差异来自硬件和RT 3D模型的损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ray-tracing wireless channel modeling and verification in Coordinated Multi-Point systems
Coordinated Multi-Point (CoMP) Multiple Input Multiple Output (MIMO) transmission improves user's coverage and data throughput particularly on the cell edges. To make full advantage of CoMP, radio planning tools need very accurate models that fully capture the MIMO channels characteristics. This paper presents detailed modeling and analysis of an uplink CoMP system using Ray-Tracing (RT)-based channel modeling. The contribution of this paper is to show how close RT simulations can predict end-to-end system performance compared to the real-world measured performance. Thorough drive test measurements and RT simulations were performed. CoMP and Conventional MIMO systems performances are evaluated and compared for measured and RT-simulated channels. The results of several scenarios show that the RT matches the measurements in terms of rates and geometrical properties. The CoMP gain resulting from the measurements is almost double the gain of RT simulations. The differences come from the hardware and the RT 3D models impairments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信