{"title":"基于低秩假设的缺失特征重建,用于鲁棒说话人识别","authors":"Christos Tzagkarakis, A. Mouchtaris","doi":"10.1109/IISA.2014.6878778","DOIUrl":null,"url":null,"abstract":"Reconstruction of missing features promotes robustness in speaker recognition applications under noisy conditions. In this paper, we aim at enhancing the reliability of speech features for noise robust speaker identification under short training and testing sessions restrictions. Towards this direction, we apply a low-rank matrix recovery approach to reconstruct the unreliable spectrographic data due to noise corruption. This is performed by leveraging prior knowledge that the speech log-magnitude spectrotemporal representation is low-rank. Experiments on real speech data show that the proposed method improves the speaker identification accuracy especially for low signal-to-noise ratio (SNR) scenarios when compared with a sparse imputation approach.","PeriodicalId":298835,"journal":{"name":"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications","volume":"25 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reconstruction of missing features based on a low-rank assumption for robust speaker identification\",\"authors\":\"Christos Tzagkarakis, A. Mouchtaris\",\"doi\":\"10.1109/IISA.2014.6878778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstruction of missing features promotes robustness in speaker recognition applications under noisy conditions. In this paper, we aim at enhancing the reliability of speech features for noise robust speaker identification under short training and testing sessions restrictions. Towards this direction, we apply a low-rank matrix recovery approach to reconstruct the unreliable spectrographic data due to noise corruption. This is performed by leveraging prior knowledge that the speech log-magnitude spectrotemporal representation is low-rank. Experiments on real speech data show that the proposed method improves the speaker identification accuracy especially for low signal-to-noise ratio (SNR) scenarios when compared with a sparse imputation approach.\",\"PeriodicalId\":298835,\"journal\":{\"name\":\"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications\",\"volume\":\"25 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2014.6878778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2014.6878778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconstruction of missing features based on a low-rank assumption for robust speaker identification
Reconstruction of missing features promotes robustness in speaker recognition applications under noisy conditions. In this paper, we aim at enhancing the reliability of speech features for noise robust speaker identification under short training and testing sessions restrictions. Towards this direction, we apply a low-rank matrix recovery approach to reconstruct the unreliable spectrographic data due to noise corruption. This is performed by leveraging prior knowledge that the speech log-magnitude spectrotemporal representation is low-rank. Experiments on real speech data show that the proposed method improves the speaker identification accuracy especially for low signal-to-noise ratio (SNR) scenarios when compared with a sparse imputation approach.