{"title":"if -集合集合上的包容-不相容原理","authors":"Jana Kelemenova","doi":"10.2991/eusflat.2011.37","DOIUrl":null,"url":null,"abstract":"P. Grzegorzewski [3] has worked the probability version of the inclusion-exclusion principle and made a generalization for IF-events. He had applied two versions of the generalized formula, corresponding to dierent t-conorms and so defined the union of IF-events. This paper contains the generalization of the Grzegorzewski theorem. We prove it for mappings from the set of IF sets to the unit interval([2], [1]). Similar generalizations are presented in [4] and [5].","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Inclusion-Exclusion Principle On the Set of IF-sets\",\"authors\":\"Jana Kelemenova\",\"doi\":\"10.2991/eusflat.2011.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"P. Grzegorzewski [3] has worked the probability version of the inclusion-exclusion principle and made a generalization for IF-events. He had applied two versions of the generalized formula, corresponding to dierent t-conorms and so defined the union of IF-events. This paper contains the generalization of the Grzegorzewski theorem. We prove it for mappings from the set of IF sets to the unit interval([2], [1]). Similar generalizations are presented in [4] and [5].\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
P. Grzegorzewski[3]研究了包含-排除原理的概率版本,并对if -事件进行了推广。他应用了两个版本的广义公式,对应于不同的t符合,从而定义了if事件的并集。本文对Grzegorzewski定理进行了推广。我们证明了从IF集合集合到单位区间([2],[1])的映射。[4]和[5]中也有类似的概括。
The Inclusion-Exclusion Principle On the Set of IF-sets
P. Grzegorzewski [3] has worked the probability version of the inclusion-exclusion principle and made a generalization for IF-events. He had applied two versions of the generalized formula, corresponding to dierent t-conorms and so defined the union of IF-events. This paper contains the generalization of the Grzegorzewski theorem. We prove it for mappings from the set of IF sets to the unit interval([2], [1]). Similar generalizations are presented in [4] and [5].