具有不可测量状态变量的动态系统的神经建模

C. Alippi, V. Piuri
{"title":"具有不可测量状态变量的动态系统的神经建模","authors":"C. Alippi, V. Piuri","doi":"10.1109/IMTC.1997.612371","DOIUrl":null,"url":null,"abstract":"The paper deals with neural modelling of dynamic processes. Attention is focused on processes characterised by non-measurable states and their modelling with nonlinear recurrent neural networks. A relationship is developed which, for such models, correlates the actual prediction error with the past ones.","PeriodicalId":124893,"journal":{"name":"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Neural modelling of dynamic systems with non-measurable state variables\",\"authors\":\"C. Alippi, V. Piuri\",\"doi\":\"10.1109/IMTC.1997.612371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with neural modelling of dynamic processes. Attention is focused on processes characterised by non-measurable states and their modelling with nonlinear recurrent neural networks. A relationship is developed which, for such models, correlates the actual prediction error with the past ones.\",\"PeriodicalId\":124893,\"journal\":{\"name\":\"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMTC.1997.612371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.1997.612371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究动态过程的神经模型。重点研究了以不可测量状态为特征的过程及其非线性递归神经网络建模。对于这种模型,建立了一种将实际预测误差与过去预测误差相关联的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural modelling of dynamic systems with non-measurable state variables
The paper deals with neural modelling of dynamic processes. Attention is focused on processes characterised by non-measurable states and their modelling with nonlinear recurrent neural networks. A relationship is developed which, for such models, correlates the actual prediction error with the past ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信