基于磁共振成像的高动态范围图像生成

Jae-Il Jung, Yo-Sung Ho
{"title":"基于磁共振成像的高动态范围图像生成","authors":"Jae-Il Jung, Yo-Sung Ho","doi":"10.1109/ICDSP.2013.6622753","DOIUrl":null,"url":null,"abstract":"Image enhancement using high-dynamic range (HDR) images is widely exploited; however, it is limited by detail loss and excessive color generation. In addition, capturing HDR images by commercial digital cameras is problematic. In this paper, we propose an image enhancement technique of fusing two images with different exposures. In order to reduce unnatural color changes in the fused image, initially we modify the lightness of the less-exposed image according to that of the highly exposed image. Then, we design a Markov random field model (MRF) by considering a gradient, chrominance, and smoothness constraint. Further, the MRF model is optimized via belief propagation. Experimental results show that the proposed algorithm generates more natural results than other state-of-the-art algorithms.","PeriodicalId":180360,"journal":{"name":"2013 18th International Conference on Digital Signal Processing (DSP)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MRF-based high dynamic range image generation\",\"authors\":\"Jae-Il Jung, Yo-Sung Ho\",\"doi\":\"10.1109/ICDSP.2013.6622753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image enhancement using high-dynamic range (HDR) images is widely exploited; however, it is limited by detail loss and excessive color generation. In addition, capturing HDR images by commercial digital cameras is problematic. In this paper, we propose an image enhancement technique of fusing two images with different exposures. In order to reduce unnatural color changes in the fused image, initially we modify the lightness of the less-exposed image according to that of the highly exposed image. Then, we design a Markov random field model (MRF) by considering a gradient, chrominance, and smoothness constraint. Further, the MRF model is optimized via belief propagation. Experimental results show that the proposed algorithm generates more natural results than other state-of-the-art algorithms.\",\"PeriodicalId\":180360,\"journal\":{\"name\":\"2013 18th International Conference on Digital Signal Processing (DSP)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2013.6622753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2013.6622753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高动态范围(HDR)图像增强技术得到了广泛的应用;但是,它受到细节损失和过多颜色生成的限制。此外,商用数码相机拍摄HDR图像也存在问题。本文提出了一种融合两幅不同曝光图像的图像增强技术。为了减少融合图像中不自然的色彩变化,我们首先根据高曝光图像的亮度来修改低曝光图像的亮度。然后,我们设计了一个考虑梯度、色度和平滑约束的马尔可夫随机场模型(MRF)。进一步,通过信念传播对MRF模型进行优化。实验结果表明,该算法比其他先进算法产生的结果更自然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRF-based high dynamic range image generation
Image enhancement using high-dynamic range (HDR) images is widely exploited; however, it is limited by detail loss and excessive color generation. In addition, capturing HDR images by commercial digital cameras is problematic. In this paper, we propose an image enhancement technique of fusing two images with different exposures. In order to reduce unnatural color changes in the fused image, initially we modify the lightness of the less-exposed image according to that of the highly exposed image. Then, we design a Markov random field model (MRF) by considering a gradient, chrominance, and smoothness constraint. Further, the MRF model is optimized via belief propagation. Experimental results show that the proposed algorithm generates more natural results than other state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信