闪烁,闪烁,小小的脉冲星/类星体

D. Melrose
{"title":"闪烁,闪烁,小小的脉冲星/类星体","authors":"D. Melrose","doi":"10.1071/P98076","DOIUrl":null,"url":null,"abstract":"The twinkling of stars is a familiar example of scintillations, due to turbulence in the Earth’s atmosphere causing fluctuations in the refractive index of the air along the line of sight. Scintillations lead to time variations in the apparent position of the source, and hence to an angular broadening on integration over an observation time. Scintillations also lead to fluctuations in the intensity of the source. Pointlike astronomical radio sources such as pulsars and (the compact cores of some) quasars scintillate due to fluctuations in the electron density along the line of sight through the interstellar medium. For quasars, low-frequency (100s of MHz) variability over periods of years is a scintillation effect, as are probably more rapid (as short as an hour) intensity variations at higher radio frequencies. Unlike the twinkling of stars, which is due to weak scintillations, the scintillations of radio sources are usually strong. Important qualitative effects associated with strong scattering are multipath propagation and a clear separation into diffractive and refractive scintillations. Quasars exhibit only refractive scintillations. Pulsars are extremely small and bright, and they vary temporally on a very short time scale, making them almost ideal sources on which to test our ideas on scintillations. Pulsars exhibit a variety of scintillation phenomena, due to both refractive and diffractive effects, the latter seen most clearly in dynamic spectra. These data are used to model the distribution of electrons through the Galaxy, to determine the distribution of pulsar velocities, and potentially to resolve the source region in a pulsar magnetosphere. These scintillation phenomena and their interpretation in terms of the theory of strong scintillations are reviewed briefly. The generalisation of the theory to include the birefringence of the plasma (Faraday effect), and its possible implications on the interpretation of circular polarisation, are then outlined. An attempt to generalise the theory to describe scattering by a distribution of discrete scattering objects is also discussed briefly.","PeriodicalId":170873,"journal":{"name":"Australian Journal of Physics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Twinkle, twinkle little pulsar/quasar\",\"authors\":\"D. Melrose\",\"doi\":\"10.1071/P98076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The twinkling of stars is a familiar example of scintillations, due to turbulence in the Earth’s atmosphere causing fluctuations in the refractive index of the air along the line of sight. Scintillations lead to time variations in the apparent position of the source, and hence to an angular broadening on integration over an observation time. Scintillations also lead to fluctuations in the intensity of the source. Pointlike astronomical radio sources such as pulsars and (the compact cores of some) quasars scintillate due to fluctuations in the electron density along the line of sight through the interstellar medium. For quasars, low-frequency (100s of MHz) variability over periods of years is a scintillation effect, as are probably more rapid (as short as an hour) intensity variations at higher radio frequencies. Unlike the twinkling of stars, which is due to weak scintillations, the scintillations of radio sources are usually strong. Important qualitative effects associated with strong scattering are multipath propagation and a clear separation into diffractive and refractive scintillations. Quasars exhibit only refractive scintillations. Pulsars are extremely small and bright, and they vary temporally on a very short time scale, making them almost ideal sources on which to test our ideas on scintillations. Pulsars exhibit a variety of scintillation phenomena, due to both refractive and diffractive effects, the latter seen most clearly in dynamic spectra. These data are used to model the distribution of electrons through the Galaxy, to determine the distribution of pulsar velocities, and potentially to resolve the source region in a pulsar magnetosphere. These scintillation phenomena and their interpretation in terms of the theory of strong scintillations are reviewed briefly. The generalisation of the theory to include the birefringence of the plasma (Faraday effect), and its possible implications on the interpretation of circular polarisation, are then outlined. An attempt to generalise the theory to describe scattering by a distribution of discrete scattering objects is also discussed briefly.\",\"PeriodicalId\":170873,\"journal\":{\"name\":\"Australian Journal of Physics\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/P98076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/P98076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

星星的闪烁是一个熟悉的闪烁的例子,由于地球大气层的湍流导致空气的折射率沿视线波动。闪烁导致源的视位置的时间变化,因此在一个观测时间内积分的角度展宽。闪烁也会导致光源强度的波动。点状天文射电源,如脉冲星和类星体(某些类星体的致密核心),由于电子密度在穿过星际介质的视线上的波动而闪烁。对于类星体来说,低频(100兆赫)在数年周期内的变化是一种闪烁效应,而在更高的无线电频率下,可能会有更快速(短至一小时)的强度变化。不像星星的闪烁是由于微弱的闪烁,射电源的闪烁通常是强烈的。与强散射相关的重要的定性效应是多径传播和衍射和折射闪烁的明确分离。类星体只表现出折射闪烁。脉冲星非常小,非常明亮,它们在很短的时间尺度上发生变化,这使它们几乎成为检验我们关于闪烁的想法的理想来源。脉冲星表现出各种各样的闪烁现象,由于折射和衍射的影响,后者在动态光谱中最明显。这些数据被用来模拟电子在银河系中的分布,以确定脉冲星速度的分布,并有可能解决脉冲星磁层中的源区域。本文对这些闪烁现象及其在强闪烁理论中的解释作了简要评述。然后概述了该理论的推广,以包括等离子体的双折射(法拉第效应),以及它对圆偏振解释的可能含义。本文还简要讨论了将该理论推广到用离散散射物体的分布来描述散射的尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twinkle, twinkle little pulsar/quasar
The twinkling of stars is a familiar example of scintillations, due to turbulence in the Earth’s atmosphere causing fluctuations in the refractive index of the air along the line of sight. Scintillations lead to time variations in the apparent position of the source, and hence to an angular broadening on integration over an observation time. Scintillations also lead to fluctuations in the intensity of the source. Pointlike astronomical radio sources such as pulsars and (the compact cores of some) quasars scintillate due to fluctuations in the electron density along the line of sight through the interstellar medium. For quasars, low-frequency (100s of MHz) variability over periods of years is a scintillation effect, as are probably more rapid (as short as an hour) intensity variations at higher radio frequencies. Unlike the twinkling of stars, which is due to weak scintillations, the scintillations of radio sources are usually strong. Important qualitative effects associated with strong scattering are multipath propagation and a clear separation into diffractive and refractive scintillations. Quasars exhibit only refractive scintillations. Pulsars are extremely small and bright, and they vary temporally on a very short time scale, making them almost ideal sources on which to test our ideas on scintillations. Pulsars exhibit a variety of scintillation phenomena, due to both refractive and diffractive effects, the latter seen most clearly in dynamic spectra. These data are used to model the distribution of electrons through the Galaxy, to determine the distribution of pulsar velocities, and potentially to resolve the source region in a pulsar magnetosphere. These scintillation phenomena and their interpretation in terms of the theory of strong scintillations are reviewed briefly. The generalisation of the theory to include the birefringence of the plasma (Faraday effect), and its possible implications on the interpretation of circular polarisation, are then outlined. An attempt to generalise the theory to describe scattering by a distribution of discrete scattering objects is also discussed briefly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信