{"title":"硅桥模对模互连的高速性能","authors":"H. Braunisch, A. Aleksov, S. Lotz, J. Swan","doi":"10.1109/EPEPS.2011.6100196","DOIUrl":null,"url":null,"abstract":"Silicon Bridge is a dense multichip packaging architecture that enables high die-to-die interconnect density and corresponding applications. We describe the basic ideas of the concept, discuss density in the die-to-die interconnect context, and report results of electrical high-speed performance simulations, based on both two-dimensional and three-dimensional electromagnetic modeling.","PeriodicalId":313560,"journal":{"name":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"High-speed performance of Silicon Bridge die-to-die interconnects\",\"authors\":\"H. Braunisch, A. Aleksov, S. Lotz, J. Swan\",\"doi\":\"10.1109/EPEPS.2011.6100196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon Bridge is a dense multichip packaging architecture that enables high die-to-die interconnect density and corresponding applications. We describe the basic ideas of the concept, discuss density in the die-to-die interconnect context, and report results of electrical high-speed performance simulations, based on both two-dimensional and three-dimensional electromagnetic modeling.\",\"PeriodicalId\":313560,\"journal\":{\"name\":\"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2011.6100196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2011.6100196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-speed performance of Silicon Bridge die-to-die interconnects
Silicon Bridge is a dense multichip packaging architecture that enables high die-to-die interconnect density and corresponding applications. We describe the basic ideas of the concept, discuss density in the die-to-die interconnect context, and report results of electrical high-speed performance simulations, based on both two-dimensional and three-dimensional electromagnetic modeling.