{"title":"扇区:多跳无线网络中节点遭遇的安全跟踪","authors":"Srdjan Capkun, L. Buttyán, J. Hubaux","doi":"10.1145/986858.986862","DOIUrl":null,"url":null,"abstract":"In this paper we present SECTOR, a set of mechanisms for the secure verification of the time of encounters between nodes in multi-hop wireless networks. This information can be used notably to prevent wormhole attacks (without requiring any clock synchronization), to secure routing protocols based on last encounters (with only loose clock synchronization), and to control the topology of the network. SECTOR is based primarily on distance-bounding techniques, on one-way hash chains and on Merkle hash trees. We analyze the communication, computation and storage complexity of the proposed mechanisms and we show that, due to their efficiency and simplicity, they are compliant with the limited resources of most mobile devices.","PeriodicalId":380051,"journal":{"name":"ACM Workshop on Security of ad hoc and Sensor Networks","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"531","resultStr":"{\"title\":\"SECTOR: secure tracking of node encounters in multi-hop wireless networks\",\"authors\":\"Srdjan Capkun, L. Buttyán, J. Hubaux\",\"doi\":\"10.1145/986858.986862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present SECTOR, a set of mechanisms for the secure verification of the time of encounters between nodes in multi-hop wireless networks. This information can be used notably to prevent wormhole attacks (without requiring any clock synchronization), to secure routing protocols based on last encounters (with only loose clock synchronization), and to control the topology of the network. SECTOR is based primarily on distance-bounding techniques, on one-way hash chains and on Merkle hash trees. We analyze the communication, computation and storage complexity of the proposed mechanisms and we show that, due to their efficiency and simplicity, they are compliant with the limited resources of most mobile devices.\",\"PeriodicalId\":380051,\"journal\":{\"name\":\"ACM Workshop on Security of ad hoc and Sensor Networks\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"531\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Workshop on Security of ad hoc and Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/986858.986862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Workshop on Security of ad hoc and Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/986858.986862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SECTOR: secure tracking of node encounters in multi-hop wireless networks
In this paper we present SECTOR, a set of mechanisms for the secure verification of the time of encounters between nodes in multi-hop wireless networks. This information can be used notably to prevent wormhole attacks (without requiring any clock synchronization), to secure routing protocols based on last encounters (with only loose clock synchronization), and to control the topology of the network. SECTOR is based primarily on distance-bounding techniques, on one-way hash chains and on Merkle hash trees. We analyze the communication, computation and storage complexity of the proposed mechanisms and we show that, due to their efficiency and simplicity, they are compliant with the limited resources of most mobile devices.