将中红外光谱与数理统计工具相结合,用于摩洛哥坚果油掺假的自动分类、定性和定量

A. El Orche, M. Bouatia, Houda Labjar, Mohamed Maaouni, M. Mbarki
{"title":"将中红外光谱与数理统计工具相结合,用于摩洛哥坚果油掺假的自动分类、定性和定量","authors":"A. El Orche, M. Bouatia, Houda Labjar, Mohamed Maaouni, M. Mbarki","doi":"10.1109/ICOA49421.2020.9094456","DOIUrl":null,"url":null,"abstract":"Adulteration detection of argan oil is one of the main objective to control its quality and to ensure customer protection. The aim of this study is to develop an automat tool based on the combination of spectroscopic method with mathematical and statistical algorithm to detect the percentages of adulteration of argan oil with commercial oil by. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), support vector machine learning regression (SVMR), partial least square regression (PLSR). The result obtained can discriminate and quantify the percentage of adulteration with commercial oil. This technologies could be successfully applied to the detection of adulteration of argan oil.","PeriodicalId":253361,"journal":{"name":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Coupling Mid Infrared Spectroscopy to mathematical and statistical tools for automatic classification, qualification and quantification of Argan oil adulteration\",\"authors\":\"A. El Orche, M. Bouatia, Houda Labjar, Mohamed Maaouni, M. Mbarki\",\"doi\":\"10.1109/ICOA49421.2020.9094456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adulteration detection of argan oil is one of the main objective to control its quality and to ensure customer protection. The aim of this study is to develop an automat tool based on the combination of spectroscopic method with mathematical and statistical algorithm to detect the percentages of adulteration of argan oil with commercial oil by. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), support vector machine learning regression (SVMR), partial least square regression (PLSR). The result obtained can discriminate and quantify the percentage of adulteration with commercial oil. This technologies could be successfully applied to the detection of adulteration of argan oil.\",\"PeriodicalId\":253361,\"journal\":{\"name\":\"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOA49421.2020.9094456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA49421.2020.9094456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摩洛哥坚果油的掺假检测是控制其质量和确保客户保护的主要目标之一。本研究的目的是开发一种基于光谱法与数理统计算法相结合的自动检测工具,用于检测摩洛哥坚果油与商品油的掺假百分比。数据分析采用三种模式识别方法:主成分分析(PCA)、支持向量机器学习回归(SVMR)和偏最小二乘回归(PLSR)。所得结果可以区分和量化商品油的掺假率。该技术可成功应用于摩洛哥坚果油的掺假检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling Mid Infrared Spectroscopy to mathematical and statistical tools for automatic classification, qualification and quantification of Argan oil adulteration
Adulteration detection of argan oil is one of the main objective to control its quality and to ensure customer protection. The aim of this study is to develop an automat tool based on the combination of spectroscopic method with mathematical and statistical algorithm to detect the percentages of adulteration of argan oil with commercial oil by. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), support vector machine learning regression (SVMR), partial least square regression (PLSR). The result obtained can discriminate and quantify the percentage of adulteration with commercial oil. This technologies could be successfully applied to the detection of adulteration of argan oil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信