{"title":"利用选择性烧结技术对生物材料模型进行强度评估","authors":"P. Marchlewski","doi":"10.5604/01.3001.0013.3595","DOIUrl":null,"url":null,"abstract":"The article presents an innovative method for the assessment of mechanical properties of biomaterials. 3D models were used for this purpose, obtained by selective laser sintering, designed in various spatial configuration (size of pores, orientation of pores ). The Rotational Bridge test stand was used to carry out the tests, which allowed generating of twisting deformations in the tested materials. The values of the moment of torsion forces transferred by the tested models were analyzed and compared, depending on their spatial structure.\n\n","PeriodicalId":348539,"journal":{"name":"Inżynieria Powierzchni","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength assessment of biomaterial models using selective sintering technology\",\"authors\":\"P. Marchlewski\",\"doi\":\"10.5604/01.3001.0013.3595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents an innovative method for the assessment of mechanical properties of biomaterials. 3D models were used for this purpose, obtained by selective laser sintering, designed in various spatial configuration (size of pores, orientation of pores ). The Rotational Bridge test stand was used to carry out the tests, which allowed generating of twisting deformations in the tested materials. The values of the moment of torsion forces transferred by the tested models were analyzed and compared, depending on their spatial structure.\\n\\n\",\"PeriodicalId\":348539,\"journal\":{\"name\":\"Inżynieria Powierzchni\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inżynieria Powierzchni\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0013.3595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inżynieria Powierzchni","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0013.3595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strength assessment of biomaterial models using selective sintering technology
The article presents an innovative method for the assessment of mechanical properties of biomaterials. 3D models were used for this purpose, obtained by selective laser sintering, designed in various spatial configuration (size of pores, orientation of pores ). The Rotational Bridge test stand was used to carry out the tests, which allowed generating of twisting deformations in the tested materials. The values of the moment of torsion forces transferred by the tested models were analyzed and compared, depending on their spatial structure.