{"title":"通过标签空间约简提高多标签分类器的性能","authors":"J. M. Moyano, J. M. Luna, Sebastián Ventura","doi":"10.1109/COINS54846.2022.9854940","DOIUrl":null,"url":null,"abstract":"Multi-label classification is related to the problem of learning a predictive model from examples that may be associated with a set of labels simultaneously. The learning process in datasets with large label spaces turns into a really challenging task since the computational complexity of most algorithms depends on the number of existing labels. This paper proposes a methodology for reducing the label space a predefined percentage of labels, with the aim of improving the runtime of the multi-label algorithms without producing a significant variation in the predictive performance. The experimental analysis demonstrates a drastic reduction in runtime, while proving that in many cases, the reduction of the label space up to 50% does not significantly affect the performance using four well-known evaluation measures.","PeriodicalId":187055,"journal":{"name":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Performance of Multi-Label Classifiers via Label Space Reduction\",\"authors\":\"J. M. Moyano, J. M. Luna, Sebastián Ventura\",\"doi\":\"10.1109/COINS54846.2022.9854940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-label classification is related to the problem of learning a predictive model from examples that may be associated with a set of labels simultaneously. The learning process in datasets with large label spaces turns into a really challenging task since the computational complexity of most algorithms depends on the number of existing labels. This paper proposes a methodology for reducing the label space a predefined percentage of labels, with the aim of improving the runtime of the multi-label algorithms without producing a significant variation in the predictive performance. The experimental analysis demonstrates a drastic reduction in runtime, while proving that in many cases, the reduction of the label space up to 50% does not significantly affect the performance using four well-known evaluation measures.\",\"PeriodicalId\":187055,\"journal\":{\"name\":\"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COINS54846.2022.9854940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS54846.2022.9854940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the Performance of Multi-Label Classifiers via Label Space Reduction
Multi-label classification is related to the problem of learning a predictive model from examples that may be associated with a set of labels simultaneously. The learning process in datasets with large label spaces turns into a really challenging task since the computational complexity of most algorithms depends on the number of existing labels. This paper proposes a methodology for reducing the label space a predefined percentage of labels, with the aim of improving the runtime of the multi-label algorithms without producing a significant variation in the predictive performance. The experimental analysis demonstrates a drastic reduction in runtime, while proving that in many cases, the reduction of the label space up to 50% does not significantly affect the performance using four well-known evaluation measures.