{"title":"Ces 'aro表示一维维伦金-傅里叶级数的负阶","authors":"T. Tepnadze","doi":"10.32523/bulmathenu.2021/2.1","DOIUrl":null,"url":null,"abstract":"In [1] has been proved some inequalities related to the approximation properties of Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series. These inequalities allow one to obtain a sufficient condition for the convergence of Ces`aro means of VilenkinFourier series in the L^p− metric in the term of modulus of continuity. In this paper, we will prove the sharpness of these conditions, in particular we find a continuous function under some condition of modulo of continuity, for which Ces`aro means of Vilenkin-Fourier series diverge in the L^p− metric.","PeriodicalId":225533,"journal":{"name":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series\",\"authors\":\"T. Tepnadze\",\"doi\":\"10.32523/bulmathenu.2021/2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [1] has been proved some inequalities related to the approximation properties of Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series. These inequalities allow one to obtain a sufficient condition for the convergence of Ces`aro means of VilenkinFourier series in the L^p− metric in the term of modulus of continuity. In this paper, we will prove the sharpness of these conditions, in particular we find a continuous function under some condition of modulo of continuity, for which Ces`aro means of Vilenkin-Fourier series diverge in the L^p− metric.\",\"PeriodicalId\":225533,\"journal\":{\"name\":\"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/bulmathenu.2021/2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/bulmathenu.2021/2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series
In [1] has been proved some inequalities related to the approximation properties of Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series. These inequalities allow one to obtain a sufficient condition for the convergence of Ces`aro means of VilenkinFourier series in the L^p− metric in the term of modulus of continuity. In this paper, we will prove the sharpness of these conditions, in particular we find a continuous function under some condition of modulo of continuity, for which Ces`aro means of Vilenkin-Fourier series diverge in the L^p− metric.