基于粗糙集和支持向量机的故障诊断研究

Du Anli, Wang Yingchun, Wang Jie, Hua Jiajun, Shao Mengguo
{"title":"基于粗糙集和支持向量机的故障诊断研究","authors":"Du Anli, Wang Yingchun, Wang Jie, Hua Jiajun, Shao Mengguo","doi":"10.1109/ICEMI.2011.6037958","DOIUrl":null,"url":null,"abstract":"It is lack of fault samples and the feature information is miscellaneous and redundant in complex circuit system. In order to solve the problem, a new fault diagnosis method was presented based on rough set (RS) and support vector machine (SVM). The RS was applied to discrete sample data the genetic algorithm (GA) was used to reduce the redundant attributes and the conflicting samples. Then the simplest fault attributes were extracted as the training samples for SVM, which was used as the classifier to isolate the faults rapidly. The simulated experiments demonstrated that the method is valid and feasible under the condition of small samples.","PeriodicalId":321964,"journal":{"name":"IEEE 2011 10th International Conference on Electronic Measurement & Instruments","volume":"49 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of fault diagnosis based on rough sets and support vector machine\",\"authors\":\"Du Anli, Wang Yingchun, Wang Jie, Hua Jiajun, Shao Mengguo\",\"doi\":\"10.1109/ICEMI.2011.6037958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is lack of fault samples and the feature information is miscellaneous and redundant in complex circuit system. In order to solve the problem, a new fault diagnosis method was presented based on rough set (RS) and support vector machine (SVM). The RS was applied to discrete sample data the genetic algorithm (GA) was used to reduce the redundant attributes and the conflicting samples. Then the simplest fault attributes were extracted as the training samples for SVM, which was used as the classifier to isolate the faults rapidly. The simulated experiments demonstrated that the method is valid and feasible under the condition of small samples.\",\"PeriodicalId\":321964,\"journal\":{\"name\":\"IEEE 2011 10th International Conference on Electronic Measurement & Instruments\",\"volume\":\"49 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 2011 10th International Conference on Electronic Measurement & Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMI.2011.6037958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 2011 10th International Conference on Electronic Measurement & Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMI.2011.6037958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复杂电路系统存在故障样本不足、特征信息繁杂、冗余等问题。为了解决这一问题,提出了一种基于粗糙集和支持向量机的故障诊断方法。将RS应用于离散样本数据,采用遗传算法减少冗余属性和冲突样本。然后提取最简单的故障属性作为支持向量机的训练样本,用支持向量机作为分类器快速分离故障。仿真实验表明,该方法在小样本条件下是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of fault diagnosis based on rough sets and support vector machine
It is lack of fault samples and the feature information is miscellaneous and redundant in complex circuit system. In order to solve the problem, a new fault diagnosis method was presented based on rough set (RS) and support vector machine (SVM). The RS was applied to discrete sample data the genetic algorithm (GA) was used to reduce the redundant attributes and the conflicting samples. Then the simplest fault attributes were extracted as the training samples for SVM, which was used as the classifier to isolate the faults rapidly. The simulated experiments demonstrated that the method is valid and feasible under the condition of small samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信