铝合金的CO2激光焊接,速度可达20米/分

Kunimitsu Takahashi, M. Kumagai, S. Katayama, A. Matsunawa
{"title":"铝合金的CO2激光焊接,速度可达20米/分","authors":"Kunimitsu Takahashi, M. Kumagai, S. Katayama, A. Matsunawa","doi":"10.1117/12.497789","DOIUrl":null,"url":null,"abstract":"CO2 laser welding of thin aluminum sheets was performed at welding speeds of up to 20 m/min to investigate the weldability, weld pool dynamics and mechanical properties of the weld bead of aluminum alloys. High-speed camera observation of weld areas showed that the thickness of the keyhole-front-face decreased to 100 μm under high-speed welding conditions and the weld pool became unstable. The focal length was optimized to increase the spot power density and thereby easily melt the aluminum sheets. Using a 76-mm focal length lens, which corresponds to 11 MW/cm2 power density, we obtained a keyhole mode weld bead with a depth of 1.3 mm at 20 m/min welding speed at 2 kW laser power. It was also possible to reduce the heat affected zone (HAZ) width to only 1.6 mm when the welding speed was 20 m/min. The HAZ width decreased as welding speed was increased. The tensile strength test of A6N01 weld beads showed that the fracture strength increased as the welding speed was increased up to 16 m/min, probably because the soft region of weld specimens was decreased. On the other hand, solidification cracks formed in the weld bead center at higher speeds, resulting in decreased strength.","PeriodicalId":159280,"journal":{"name":"International Congress on Laser Advanced Materials Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2 laser welding of aluminum alloys at high speeds up to 20 m/min\",\"authors\":\"Kunimitsu Takahashi, M. Kumagai, S. Katayama, A. Matsunawa\",\"doi\":\"10.1117/12.497789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CO2 laser welding of thin aluminum sheets was performed at welding speeds of up to 20 m/min to investigate the weldability, weld pool dynamics and mechanical properties of the weld bead of aluminum alloys. High-speed camera observation of weld areas showed that the thickness of the keyhole-front-face decreased to 100 μm under high-speed welding conditions and the weld pool became unstable. The focal length was optimized to increase the spot power density and thereby easily melt the aluminum sheets. Using a 76-mm focal length lens, which corresponds to 11 MW/cm2 power density, we obtained a keyhole mode weld bead with a depth of 1.3 mm at 20 m/min welding speed at 2 kW laser power. It was also possible to reduce the heat affected zone (HAZ) width to only 1.6 mm when the welding speed was 20 m/min. The HAZ width decreased as welding speed was increased. The tensile strength test of A6N01 weld beads showed that the fracture strength increased as the welding speed was increased up to 16 m/min, probably because the soft region of weld specimens was decreased. On the other hand, solidification cracks formed in the weld bead center at higher speeds, resulting in decreased strength.\",\"PeriodicalId\":159280,\"journal\":{\"name\":\"International Congress on Laser Advanced Materials Processing\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Congress on Laser Advanced Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.497789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Laser Advanced Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.497789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以高达20 m/min的焊接速度对铝合金薄板进行CO2激光焊接,研究了铝合金焊缝的可焊性、熔池动态和力学性能。高速摄像机对焊缝区域的观察表明,在高速焊接条件下,锁孔前表面厚度减小至100 μm,焊缝熔池变得不稳定。通过优化焦距,提高光斑功率密度,使铝板易于熔化。采用76 mm焦距透镜,对应11 MW/cm2的功率密度,在2 kW激光功率下,以20 m/min的焊接速度获得了深度为1.3 mm的锁孔模式焊缝。当焊接速度为20 m/min时,也可以将热影响区(HAZ)宽度减小到仅1.6 mm。随着焊接速度的增加,热影响区宽度减小。A6N01焊珠的抗拉强度试验表明,随着焊接速度的增加,断裂强度增加,达到16 m/min,这可能是由于焊缝试样的软区减少所致。另一方面,在较高的速度下,焊缝中心形成凝固裂纹,导致强度下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CO2 laser welding of aluminum alloys at high speeds up to 20 m/min
CO2 laser welding of thin aluminum sheets was performed at welding speeds of up to 20 m/min to investigate the weldability, weld pool dynamics and mechanical properties of the weld bead of aluminum alloys. High-speed camera observation of weld areas showed that the thickness of the keyhole-front-face decreased to 100 μm under high-speed welding conditions and the weld pool became unstable. The focal length was optimized to increase the spot power density and thereby easily melt the aluminum sheets. Using a 76-mm focal length lens, which corresponds to 11 MW/cm2 power density, we obtained a keyhole mode weld bead with a depth of 1.3 mm at 20 m/min welding speed at 2 kW laser power. It was also possible to reduce the heat affected zone (HAZ) width to only 1.6 mm when the welding speed was 20 m/min. The HAZ width decreased as welding speed was increased. The tensile strength test of A6N01 weld beads showed that the fracture strength increased as the welding speed was increased up to 16 m/min, probably because the soft region of weld specimens was decreased. On the other hand, solidification cracks formed in the weld bead center at higher speeds, resulting in decreased strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信