M. Steidl, A. Paszuk, Weihong Zhao, S. Bruckner, A. Dobrich, O. Supplie, Johannes Luczak, P. Kleinschmidt, H. Doscher, T. Hannappel
{"title":"用于III-V纳米线生长的Si(111)表面的movpe制备","authors":"M. Steidl, A. Paszuk, Weihong Zhao, S. Bruckner, A. Dobrich, O. Supplie, Johannes Luczak, P. Kleinschmidt, H. Doscher, T. Hannappel","doi":"10.1109/ICIPRM.2013.6562590","DOIUrl":null,"url":null,"abstract":"We studied the preparation of the clean Si(111) surface in H2 ambient with in situ reflection anisotropy spectroscopy and UHV-based surface science tools after contamination-free transfer. X-ray photoelectron spectroscopy confirmed complete oxide removal after high-temperature annealing. In situ RAS enabled observation of the oxide removal in dependence of process temperature. Monohydride termination was verified by Fourier transform infrared spectroscopy which agrees with a (1×1) surface reconstruction we observed by scanning tunneling microscopy and low energy electron diffraction. By atomic force microscopy analysis of the morphology, we found that wet-chemical pretreatment has an impact on the different silicon surfaces we have prepared, including homoepitaxy and termination of silicon with arsenic.","PeriodicalId":120297,"journal":{"name":"2013 International Conference on Indium Phosphide and Related Materials (IPRM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOVPE-preparation of Si(111) surfaces for III–V nanowire growth\",\"authors\":\"M. Steidl, A. Paszuk, Weihong Zhao, S. Bruckner, A. Dobrich, O. Supplie, Johannes Luczak, P. Kleinschmidt, H. Doscher, T. Hannappel\",\"doi\":\"10.1109/ICIPRM.2013.6562590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied the preparation of the clean Si(111) surface in H2 ambient with in situ reflection anisotropy spectroscopy and UHV-based surface science tools after contamination-free transfer. X-ray photoelectron spectroscopy confirmed complete oxide removal after high-temperature annealing. In situ RAS enabled observation of the oxide removal in dependence of process temperature. Monohydride termination was verified by Fourier transform infrared spectroscopy which agrees with a (1×1) surface reconstruction we observed by scanning tunneling microscopy and low energy electron diffraction. By atomic force microscopy analysis of the morphology, we found that wet-chemical pretreatment has an impact on the different silicon surfaces we have prepared, including homoepitaxy and termination of silicon with arsenic.\",\"PeriodicalId\":120297,\"journal\":{\"name\":\"2013 International Conference on Indium Phosphide and Related Materials (IPRM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Indium Phosphide and Related Materials (IPRM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPRM.2013.6562590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Indium Phosphide and Related Materials (IPRM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2013.6562590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MOVPE-preparation of Si(111) surfaces for III–V nanowire growth
We studied the preparation of the clean Si(111) surface in H2 ambient with in situ reflection anisotropy spectroscopy and UHV-based surface science tools after contamination-free transfer. X-ray photoelectron spectroscopy confirmed complete oxide removal after high-temperature annealing. In situ RAS enabled observation of the oxide removal in dependence of process temperature. Monohydride termination was verified by Fourier transform infrared spectroscopy which agrees with a (1×1) surface reconstruction we observed by scanning tunneling microscopy and low energy electron diffraction. By atomic force microscopy analysis of the morphology, we found that wet-chemical pretreatment has an impact on the different silicon surfaces we have prepared, including homoepitaxy and termination of silicon with arsenic.