Yiwen Chen, Xue-Yong Li, Sheng Guo, Xiang Yao Ng, Marcelo H ANG Jr
{"title":"Real2Sim或Sim2Real:使用深度强化学习和Real2Sim策略适应的机器人视觉插入","authors":"Yiwen Chen, Xue-Yong Li, Sheng Guo, Xiang Yao Ng, Marcelo H ANG Jr","doi":"10.48550/arXiv.2206.02679","DOIUrl":null,"url":null,"abstract":". Reinforcement learning has shown a wide usage in robotics tasks, such as insertion and grasping. However, without a practical sim2real strategy, the policy trained in simulation could fail on the real task. There are also wide re-searches in the sim2real strategies, but most of those methods rely on heavy image rendering, domain randomization training, or tuning. In this work, we solve the insertion task using a pure visual reinforcement learning solution with minimum infrastructure requirement. We also propose a novel sim2real strategy, Real2Sim, which provides a novel and easier solution in policy adaptation. We discuss the advantage of Real2Sim compared with Sim2Real.","PeriodicalId":385930,"journal":{"name":"Annual Meeting of the IEEE Industry Applications Society","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real2Sim or Sim2Real: Robotics Visual Insertion using Deep Reinforcement Learning and Real2Sim Policy Adaptation\",\"authors\":\"Yiwen Chen, Xue-Yong Li, Sheng Guo, Xiang Yao Ng, Marcelo H ANG Jr\",\"doi\":\"10.48550/arXiv.2206.02679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Reinforcement learning has shown a wide usage in robotics tasks, such as insertion and grasping. However, without a practical sim2real strategy, the policy trained in simulation could fail on the real task. There are also wide re-searches in the sim2real strategies, but most of those methods rely on heavy image rendering, domain randomization training, or tuning. In this work, we solve the insertion task using a pure visual reinforcement learning solution with minimum infrastructure requirement. We also propose a novel sim2real strategy, Real2Sim, which provides a novel and easier solution in policy adaptation. We discuss the advantage of Real2Sim compared with Sim2Real.\",\"PeriodicalId\":385930,\"journal\":{\"name\":\"Annual Meeting of the IEEE Industry Applications Society\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Meeting of the IEEE Industry Applications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.02679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the IEEE Industry Applications Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.02679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real2Sim or Sim2Real: Robotics Visual Insertion using Deep Reinforcement Learning and Real2Sim Policy Adaptation
. Reinforcement learning has shown a wide usage in robotics tasks, such as insertion and grasping. However, without a practical sim2real strategy, the policy trained in simulation could fail on the real task. There are also wide re-searches in the sim2real strategies, but most of those methods rely on heavy image rendering, domain randomization training, or tuning. In this work, we solve the insertion task using a pure visual reinforcement learning solution with minimum infrastructure requirement. We also propose a novel sim2real strategy, Real2Sim, which provides a novel and easier solution in policy adaptation. We discuss the advantage of Real2Sim compared with Sim2Real.