用于深度神经网络(DNN)加速器的自旋-轨道转矩磁性内存(SOT-MRAM)性能基准测试

Yandong Luo, Piyush Kumar, Y. Liao, William Hwang, F. Xue, Wilman Tsai, Shan-Xiang Wang, A. Naeemi, Shimeng Yu
{"title":"用于深度神经网络(DNN)加速器的自旋-轨道转矩磁性内存(SOT-MRAM)性能基准测试","authors":"Yandong Luo, Piyush Kumar, Y. Liao, William Hwang, F. Xue, Wilman Tsai, Shan-Xiang Wang, A. Naeemi, Shimeng Yu","doi":"10.1109/IMW52921.2022.9779279","DOIUrl":null,"url":null,"abstract":"In this paper, the system level evaluation is performed for DNN inference engines using SOT-MRAM, which includes compute-in-memory (CIM) paradigm and near-memory systolic array. The write performance of the SOT materials is projected to 7nm with a macrospin model. For read-intensive CIM, SOT-MRAM with increased on-resistance can achieve 51% and 93% higher energy efficiency than 8T-SRAM at 22nm and 7nm nodes, respectively. For write-intensive systolic array at 7nm node, SOT-MRAM with PtCu track shows 17% higher energy efficiency than SRAM global buffer, respectively.","PeriodicalId":132074,"journal":{"name":"2022 IEEE International Memory Workshop (IMW)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Benchmarking of Spin-Orbit Torque Magnetic RAM (SOT-MRAM) for Deep Neural Network (DNN) Accelerators\",\"authors\":\"Yandong Luo, Piyush Kumar, Y. Liao, William Hwang, F. Xue, Wilman Tsai, Shan-Xiang Wang, A. Naeemi, Shimeng Yu\",\"doi\":\"10.1109/IMW52921.2022.9779279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the system level evaluation is performed for DNN inference engines using SOT-MRAM, which includes compute-in-memory (CIM) paradigm and near-memory systolic array. The write performance of the SOT materials is projected to 7nm with a macrospin model. For read-intensive CIM, SOT-MRAM with increased on-resistance can achieve 51% and 93% higher energy efficiency than 8T-SRAM at 22nm and 7nm nodes, respectively. For write-intensive systolic array at 7nm node, SOT-MRAM with PtCu track shows 17% higher energy efficiency than SRAM global buffer, respectively.\",\"PeriodicalId\":132074,\"journal\":{\"name\":\"2022 IEEE International Memory Workshop (IMW)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW52921.2022.9779279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW52921.2022.9779279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文使用SOT-MRAM对DNN推理引擎进行了系统级评估,其中包括内存计算(CIM)范式和近内存收缩阵列。用宏自旋模型预测了SOT材料在7nm的写入性能。对于读密集型CIM,导通电阻增加的SOT-MRAM在22nm和7nm节点上的能量效率分别比8T-SRAM高51%和93%。对于7nm节点的写密集型收缩阵列,带PtCu磁道的SOT-MRAM比SRAM全局缓冲区的能量效率分别提高17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Benchmarking of Spin-Orbit Torque Magnetic RAM (SOT-MRAM) for Deep Neural Network (DNN) Accelerators
In this paper, the system level evaluation is performed for DNN inference engines using SOT-MRAM, which includes compute-in-memory (CIM) paradigm and near-memory systolic array. The write performance of the SOT materials is projected to 7nm with a macrospin model. For read-intensive CIM, SOT-MRAM with increased on-resistance can achieve 51% and 93% higher energy efficiency than 8T-SRAM at 22nm and 7nm nodes, respectively. For write-intensive systolic array at 7nm node, SOT-MRAM with PtCu track shows 17% higher energy efficiency than SRAM global buffer, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信