用高斯噪声渲染精细的毛发状物体

Mikio Shinya, S. Nishida
{"title":"用高斯噪声渲染精细的毛发状物体","authors":"Mikio Shinya, S. Nishida","doi":"10.1145/2628257.2628269","DOIUrl":null,"url":null,"abstract":"When synthesizing images of fine objects like hair, we usually adopt sub-pixel drawing techniques to improve the image quality. For this paper, we analyzed the statistical features of images of thin lines and found that the distributions of the pixel values tended to be Gaussian. A psychophysical experiment showed that images of stripes with the appropriate Gaussian noise added are perceived to be finer than the original ones. We applied this perceptional property to hair rendering and developed a fast fine hair drawing algorithm.","PeriodicalId":102213,"journal":{"name":"Proceedings of the ACM Symposium on Applied Perception","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rendering fine hair-like objects with Gaussian noise\",\"authors\":\"Mikio Shinya, S. Nishida\",\"doi\":\"10.1145/2628257.2628269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When synthesizing images of fine objects like hair, we usually adopt sub-pixel drawing techniques to improve the image quality. For this paper, we analyzed the statistical features of images of thin lines and found that the distributions of the pixel values tended to be Gaussian. A psychophysical experiment showed that images of stripes with the appropriate Gaussian noise added are perceived to be finer than the original ones. We applied this perceptional property to hair rendering and developed a fast fine hair drawing algorithm.\",\"PeriodicalId\":102213,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Applied Perception\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Applied Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2628257.2628269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Applied Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2628257.2628269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在合成毛发等精细物体的图像时,我们通常采用亚像素绘制技术来提高图像质量。在本文中,我们分析了细线图像的统计特征,发现像素值的分布趋于高斯分布。一项心理物理实验表明,添加适当高斯噪声的条纹图像被认为比原始图像更精细。我们将这种感知特性应用到头发绘制中,并开发了一种快速的精细头发绘制算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rendering fine hair-like objects with Gaussian noise
When synthesizing images of fine objects like hair, we usually adopt sub-pixel drawing techniques to improve the image quality. For this paper, we analyzed the statistical features of images of thin lines and found that the distributions of the pixel values tended to be Gaussian. A psychophysical experiment showed that images of stripes with the appropriate Gaussian noise added are perceived to be finer than the original ones. We applied this perceptional property to hair rendering and developed a fast fine hair drawing algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信