A. Zammouri, Abdelaziz Aitmoussa, SyIvain Chevallier, É. Monacelli
{"title":"无创单通道脑电图记录中智能伪影的去除","authors":"A. Zammouri, Abdelaziz Aitmoussa, SyIvain Chevallier, É. Monacelli","doi":"10.1109/ISACV.2015.7106164","DOIUrl":null,"url":null,"abstract":"Muscle noises, line noises and eye movements are the main interferences that make difficulties when interpreting and analyzing electroencephalographic signals. Many methods have been proposed for artifacts removing from EEG measurements, and especially those arising from an ocular source. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) have been proposed to remove ocular artifacts from multichannel EEG. In contrast to this, we present a new algorithm for ocular artifacts removal from a single electroencephalographic channel recording. This method is based on a set of information on brain wave frequencies. Our results on EEG data, collected from healthy subjects, show that our algorithm can effectively detect and remove ocular artifacts in EEG recordings.","PeriodicalId":426557,"journal":{"name":"2015 Intelligent Systems and Computer Vision (ISCV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Intelligentocular artifacts removal in a noninvasive singlechannel EEG recording\",\"authors\":\"A. Zammouri, Abdelaziz Aitmoussa, SyIvain Chevallier, É. Monacelli\",\"doi\":\"10.1109/ISACV.2015.7106164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Muscle noises, line noises and eye movements are the main interferences that make difficulties when interpreting and analyzing electroencephalographic signals. Many methods have been proposed for artifacts removing from EEG measurements, and especially those arising from an ocular source. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) have been proposed to remove ocular artifacts from multichannel EEG. In contrast to this, we present a new algorithm for ocular artifacts removal from a single electroencephalographic channel recording. This method is based on a set of information on brain wave frequencies. Our results on EEG data, collected from healthy subjects, show that our algorithm can effectively detect and remove ocular artifacts in EEG recordings.\",\"PeriodicalId\":426557,\"journal\":{\"name\":\"2015 Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACV.2015.7106164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2015.7106164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intelligentocular artifacts removal in a noninvasive singlechannel EEG recording
Muscle noises, line noises and eye movements are the main interferences that make difficulties when interpreting and analyzing electroencephalographic signals. Many methods have been proposed for artifacts removing from EEG measurements, and especially those arising from an ocular source. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) have been proposed to remove ocular artifacts from multichannel EEG. In contrast to this, we present a new algorithm for ocular artifacts removal from a single electroencephalographic channel recording. This method is based on a set of information on brain wave frequencies. Our results on EEG data, collected from healthy subjects, show that our algorithm can effectively detect and remove ocular artifacts in EEG recordings.