层次空间结构中的稀疏模型用于食品图像识别

R. Kusumoto, X. Han, Yenwei Chen
{"title":"层次空间结构中的稀疏模型用于食品图像识别","authors":"R. Kusumoto, X. Han, Yenwei Chen","doi":"10.1109/BMEI.2013.6747060","DOIUrl":null,"url":null,"abstract":"Recent year, with the increasing of unhealthy diets which will threaten people's life due to the various resulted risks such as heart stroke, liver trouble and so on, the remain for healthy life has attracted much attention and then how to manage the dietary life is becoming more and more important. In this research, we aim to construct a auto-recognition system of food images and keep the daily food-log records which will contribute to manage dietary life. With the easily available food images taken by mobile phone, it prospects to give the insight about the daily dietary of users with our constructed food recognition system. In order to achieve the acceptable recognition performance of the food images, we propose to apply a sparse model for coding a local descriptor extracted from the food images. Sparse coding: an extension of vector quantization for local descriptors, which is popularly used in Bag-of-Features (BoF) for image representation in generic object recognition, can represent the local descriptors more efficient, and then abtain more discriminant feature for food image representation. Moreover, in order to introduce spatial information, a hierarchic spatial structure is explored to extract the feature based sparse model. Experiments validate that the proposed strategy can greatly improve the recognition rates compared with the conventional BOF model on two databases: our constructed RFID and the public PFID.","PeriodicalId":163211,"journal":{"name":"2013 6th International Conference on Biomedical Engineering and Informatics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse model in hierarchic spatial structure for food image recognition\",\"authors\":\"R. Kusumoto, X. Han, Yenwei Chen\",\"doi\":\"10.1109/BMEI.2013.6747060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent year, with the increasing of unhealthy diets which will threaten people's life due to the various resulted risks such as heart stroke, liver trouble and so on, the remain for healthy life has attracted much attention and then how to manage the dietary life is becoming more and more important. In this research, we aim to construct a auto-recognition system of food images and keep the daily food-log records which will contribute to manage dietary life. With the easily available food images taken by mobile phone, it prospects to give the insight about the daily dietary of users with our constructed food recognition system. In order to achieve the acceptable recognition performance of the food images, we propose to apply a sparse model for coding a local descriptor extracted from the food images. Sparse coding: an extension of vector quantization for local descriptors, which is popularly used in Bag-of-Features (BoF) for image representation in generic object recognition, can represent the local descriptors more efficient, and then abtain more discriminant feature for food image representation. Moreover, in order to introduce spatial information, a hierarchic spatial structure is explored to extract the feature based sparse model. Experiments validate that the proposed strategy can greatly improve the recognition rates compared with the conventional BOF model on two databases: our constructed RFID and the public PFID.\",\"PeriodicalId\":163211,\"journal\":{\"name\":\"2013 6th International Conference on Biomedical Engineering and Informatics\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 6th International Conference on Biomedical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEI.2013.6747060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2013.6747060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,随着不健康饮食的增加,其所带来的各种风险,如心脏病、肝病等,将威胁到人们的生命,对健康生活的保留引起了人们的关注,如何管理饮食生活变得越来越重要。在本研究中,我们的目标是建立一个食物图像的自动识别系统,并保存日常的食物日志记录,从而有助于管理饮食生活。利用手机拍摄的方便获取的食物图像,利用我们构建的食物识别系统来洞察用户的日常饮食。为了获得可接受的食品图像识别性能,我们提出应用稀疏模型对从食品图像中提取的局部描述符进行编码。稀疏编码:是对局部描述符矢量量化的一种扩展,可以更有效地表示局部描述符,从而获得更具判别性的特征,用于食品图像的表示。稀疏编码通常用于通用物体识别中的特征袋(Bag-of-Features, BoF)图像表示。此外,为了引入空间信息,探索了一种层次空间结构来提取基于特征的稀疏模型。在我们构建的RFID和公共PFID两个数据库上,实验验证了该策略与传统的BOF模型相比,可以大大提高识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse model in hierarchic spatial structure for food image recognition
Recent year, with the increasing of unhealthy diets which will threaten people's life due to the various resulted risks such as heart stroke, liver trouble and so on, the remain for healthy life has attracted much attention and then how to manage the dietary life is becoming more and more important. In this research, we aim to construct a auto-recognition system of food images and keep the daily food-log records which will contribute to manage dietary life. With the easily available food images taken by mobile phone, it prospects to give the insight about the daily dietary of users with our constructed food recognition system. In order to achieve the acceptable recognition performance of the food images, we propose to apply a sparse model for coding a local descriptor extracted from the food images. Sparse coding: an extension of vector quantization for local descriptors, which is popularly used in Bag-of-Features (BoF) for image representation in generic object recognition, can represent the local descriptors more efficient, and then abtain more discriminant feature for food image representation. Moreover, in order to introduce spatial information, a hierarchic spatial structure is explored to extract the feature based sparse model. Experiments validate that the proposed strategy can greatly improve the recognition rates compared with the conventional BOF model on two databases: our constructed RFID and the public PFID.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信