通过全脑建模来理解跨越时空的大脑状态

J. Vohryzek, J. Cabral, P. Vuust, G. Deco, M. Kringelbach
{"title":"通过全脑建模来理解跨越时空的大脑状态","authors":"J. Vohryzek, J. Cabral, P. Vuust, G. Deco, M. Kringelbach","doi":"10.1098/rsta.2021.0247","DOIUrl":null,"url":null,"abstract":"In order to survive in a complex environment, the human brain relies on the ability to flexibly adapt ongoing behaviour according to intrinsic and extrinsic signals. This capability has been linked to specific whole-brain activity patterns whose relative stability (order) allows for consistent functioning, supported by sufficient intrinsic instability needed for optimal adaptability. The emergent, spontaneous balance between order and disorder in brain activity over spacetime underpins distinct brain states. For example, depression is characterized by excessively rigid, highly ordered states, while psychedelics can bring about more disordered, sometimes overly flexible states. Recent developments in systems, computational and theoretical neuroscience have started to make inroads into the characterization of such complex dynamics over space and time. Here, we review recent insights drawn from neuroimaging and whole-brain modelling motivating using mechanistic principles from dynamical system theory to study and characterize brain states. We show how different healthy and altered brain states are associated to characteristic spacetime dynamics which in turn may offer insights that in time can inspire new treatments for rebalancing brain states in disease. This article is part of the theme issue ‘Emergent phenomena in complex physical and socio-technical systems: from cells to societies’.","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Understanding brain states across spacetime informed by whole-brain modelling\",\"authors\":\"J. Vohryzek, J. Cabral, P. Vuust, G. Deco, M. Kringelbach\",\"doi\":\"10.1098/rsta.2021.0247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to survive in a complex environment, the human brain relies on the ability to flexibly adapt ongoing behaviour according to intrinsic and extrinsic signals. This capability has been linked to specific whole-brain activity patterns whose relative stability (order) allows for consistent functioning, supported by sufficient intrinsic instability needed for optimal adaptability. The emergent, spontaneous balance between order and disorder in brain activity over spacetime underpins distinct brain states. For example, depression is characterized by excessively rigid, highly ordered states, while psychedelics can bring about more disordered, sometimes overly flexible states. Recent developments in systems, computational and theoretical neuroscience have started to make inroads into the characterization of such complex dynamics over space and time. Here, we review recent insights drawn from neuroimaging and whole-brain modelling motivating using mechanistic principles from dynamical system theory to study and characterize brain states. We show how different healthy and altered brain states are associated to characteristic spacetime dynamics which in turn may offer insights that in time can inspire new treatments for rebalancing brain states in disease. This article is part of the theme issue ‘Emergent phenomena in complex physical and socio-technical systems: from cells to societies’.\",\"PeriodicalId\":286094,\"journal\":{\"name\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

为了在复杂的环境中生存,人类大脑依赖于根据内在和外在信号灵活适应正在进行的行为的能力。这种能力与特定的全脑活动模式有关,其相对稳定性(顺序)允许一致的功能,并得到最佳适应性所需的充分内在不稳定性的支持。大脑活动在时空中有序与无序之间的自然平衡支撑着不同的大脑状态。例如,抑郁症的特点是过度僵化,高度有序的状态,而迷幻药可以带来更多的混乱,有时过度灵活的状态。系统、计算和理论神经科学的最新发展已经开始进入这种复杂的时空动力学的表征。在这里,我们回顾了最近从神经成像和全脑建模中获得的见解,这些建模利用动力系统理论的机制原理来研究和表征大脑状态。我们展示了不同的健康和改变的大脑状态是如何与特征时空动力学相关联的,这反过来又可能提供见解,及时可以激发新的治疗方法来重新平衡疾病中的大脑状态。本文是主题“复杂物理和社会技术系统中的涌现现象:从细胞到社会”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding brain states across spacetime informed by whole-brain modelling
In order to survive in a complex environment, the human brain relies on the ability to flexibly adapt ongoing behaviour according to intrinsic and extrinsic signals. This capability has been linked to specific whole-brain activity patterns whose relative stability (order) allows for consistent functioning, supported by sufficient intrinsic instability needed for optimal adaptability. The emergent, spontaneous balance between order and disorder in brain activity over spacetime underpins distinct brain states. For example, depression is characterized by excessively rigid, highly ordered states, while psychedelics can bring about more disordered, sometimes overly flexible states. Recent developments in systems, computational and theoretical neuroscience have started to make inroads into the characterization of such complex dynamics over space and time. Here, we review recent insights drawn from neuroimaging and whole-brain modelling motivating using mechanistic principles from dynamical system theory to study and characterize brain states. We show how different healthy and altered brain states are associated to characteristic spacetime dynamics which in turn may offer insights that in time can inspire new treatments for rebalancing brain states in disease. This article is part of the theme issue ‘Emergent phenomena in complex physical and socio-technical systems: from cells to societies’.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信