基于粒子群算法的边缘检测滤波器设计

M. Alipoor, Sajjad Imandoost, J. Haddadnia
{"title":"基于粒子群算法的边缘检测滤波器设计","authors":"M. Alipoor, Sajjad Imandoost, J. Haddadnia","doi":"10.1109/IRANIANCEE.2010.5507008","DOIUrl":null,"url":null,"abstract":"This paper presents a novel edge detection method based on Particle Swarm Optimization. Unlike classical filters that are set by intuitive knowledge, a new filter is proposed on the basis of evolutionary computation. A proper synthetic training image and its edge map are used to find an optimum edge filter. The advantage of this method is that an effective edge detection filter can be easily constructed. Provided results certify that our proposed method outperforms commonly used edge detection algorithms.","PeriodicalId":282587,"journal":{"name":"2010 18th Iranian Conference on Electrical Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Designing edge detection filters using Particle Swarm Optimization\",\"authors\":\"M. Alipoor, Sajjad Imandoost, J. Haddadnia\",\"doi\":\"10.1109/IRANIANCEE.2010.5507008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel edge detection method based on Particle Swarm Optimization. Unlike classical filters that are set by intuitive knowledge, a new filter is proposed on the basis of evolutionary computation. A proper synthetic training image and its edge map are used to find an optimum edge filter. The advantage of this method is that an effective edge detection filter can be easily constructed. Provided results certify that our proposed method outperforms commonly used edge detection algorithms.\",\"PeriodicalId\":282587,\"journal\":{\"name\":\"2010 18th Iranian Conference on Electrical Engineering\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 18th Iranian Conference on Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2010.5507008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2010.5507008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出了一种基于粒子群算法的边缘检测方法。与传统的基于直觉知识的滤波器不同,本文提出了一种基于进化计算的滤波器。利用合适的合成训练图像及其边缘映射来寻找最优的边缘滤波器。该方法的优点是易于构造有效的边缘检测滤波器。实验结果表明,该方法优于常用的边缘检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing edge detection filters using Particle Swarm Optimization
This paper presents a novel edge detection method based on Particle Swarm Optimization. Unlike classical filters that are set by intuitive knowledge, a new filter is proposed on the basis of evolutionary computation. A proper synthetic training image and its edge map are used to find an optimum edge filter. The advantage of this method is that an effective edge detection filter can be easily constructed. Provided results certify that our proposed method outperforms commonly used edge detection algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信