基于深度强化学习的探空气球导航

Marco Gannetti, M. Gemignani, S. Marcuccio
{"title":"基于深度强化学习的探空气球导航","authors":"Marco Gannetti, M. Gemignani, S. Marcuccio","doi":"10.1109/MetroAeroSpace57412.2023.10189997","DOIUrl":null,"url":null,"abstract":"With the availability of high performance miniaturized electronics, sounding balloons have become a viable options to conduct scientific experiments and commercial missions in the stratosphere, acting as a reduced size, low mass, low cost alternative to large zero-pressure or superpressure balloons. This paper explores the use of deep reinforcement learning for controlling a stratospheric sounding balloon to perform station-keeping over a specified area. In particular, we implement the deep Q-network (DQN) algorithm to learn a control policy for the balloon by exploiting different wind directions at different altitudes, reached by dropping ballast or releasing lifting gas. We conduct experiments using a simulation environment and evaluate the performance of the trained DQN model in real historical data. Our results show that the DQN algorithm can effectively learn a control policy that achieves satisfactory station-keeping with a high success rate, outperforming other, more direct control approaches. Our study presents a possible solution for the control of stratospheric sounding balloons in various applications.","PeriodicalId":153093,"journal":{"name":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigation of Sounding Balloons with Deep Reinforcement Learning\",\"authors\":\"Marco Gannetti, M. Gemignani, S. Marcuccio\",\"doi\":\"10.1109/MetroAeroSpace57412.2023.10189997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the availability of high performance miniaturized electronics, sounding balloons have become a viable options to conduct scientific experiments and commercial missions in the stratosphere, acting as a reduced size, low mass, low cost alternative to large zero-pressure or superpressure balloons. This paper explores the use of deep reinforcement learning for controlling a stratospheric sounding balloon to perform station-keeping over a specified area. In particular, we implement the deep Q-network (DQN) algorithm to learn a control policy for the balloon by exploiting different wind directions at different altitudes, reached by dropping ballast or releasing lifting gas. We conduct experiments using a simulation environment and evaluate the performance of the trained DQN model in real historical data. Our results show that the DQN algorithm can effectively learn a control policy that achieves satisfactory station-keeping with a high success rate, outperforming other, more direct control approaches. Our study presents a possible solution for the control of stratospheric sounding balloons in various applications.\",\"PeriodicalId\":153093,\"journal\":{\"name\":\"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAeroSpace57412.2023.10189997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAeroSpace57412.2023.10189997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着高性能小型化电子设备的出现,探测气球已经成为在平流层进行科学实验和商业任务的可行选择,作为大型零压或超压气球的缩小尺寸,低质量,低成本的替代品。本文探讨了使用深度强化学习来控制平流层探空气球在指定区域进行站位保持。特别地,我们实现了深度q -网络(deep Q-network, DQN)算法,利用气球在不同高度的不同风向,通过投下压舱物或释放升力气体来学习控制策略。我们使用仿真环境进行实验,并在真实历史数据中评估训练好的DQN模型的性能。结果表明,DQN算法可以有效地学习控制策略,达到满意的站位保持,成功率高,优于其他更直接的控制方法。我们的研究为平流层探空气球在各种应用中的控制提供了一种可能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Navigation of Sounding Balloons with Deep Reinforcement Learning
With the availability of high performance miniaturized electronics, sounding balloons have become a viable options to conduct scientific experiments and commercial missions in the stratosphere, acting as a reduced size, low mass, low cost alternative to large zero-pressure or superpressure balloons. This paper explores the use of deep reinforcement learning for controlling a stratospheric sounding balloon to perform station-keeping over a specified area. In particular, we implement the deep Q-network (DQN) algorithm to learn a control policy for the balloon by exploiting different wind directions at different altitudes, reached by dropping ballast or releasing lifting gas. We conduct experiments using a simulation environment and evaluate the performance of the trained DQN model in real historical data. Our results show that the DQN algorithm can effectively learn a control policy that achieves satisfactory station-keeping with a high success rate, outperforming other, more direct control approaches. Our study presents a possible solution for the control of stratospheric sounding balloons in various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信