利用GOSAT数据预测马来西亚半岛柱平均干空气二氧化碳摩尔分数(XCO2)

Sim Chong Keat, L. H. San, M. Jafri
{"title":"利用GOSAT数据预测马来西亚半岛柱平均干空气二氧化碳摩尔分数(XCO2)","authors":"Sim Chong Keat, L. H. San, M. Jafri","doi":"10.1109/ICONSPACE.2015.7283805","DOIUrl":null,"url":null,"abstract":"Carbon dioxide (CO2) is the primary anthropogenic GHG and contribute up to 70% of the global warming. It has been associated with climate change which influences land and water resources, food and pasture availability, disappearance of plants and animal species and loss of habitat. The objective of this study was used multiple linear regression (MLR) method to analyze the relationship between the column averaged dry-air mole fractions of carbon dioxide (XCO2) and other atmospheric variables in Peninsular Malaysia based on Greenhouse Gases Observing Satellite (GOSAT) data for the period of 2009-2014. Then XCO2 was predicted using the obtained best-fitting MLR. The results indicated that prediction model with the measured data showed a high correlation coefficient (R2=0.9037), indicating the model's accuracy and efficiency. The GOSAT data are encouraging and capable to examine the increase of the atmosphere greenhouse gases over different regions in Peninsular Malaysia.","PeriodicalId":150022,"journal":{"name":"2015 International Conference on Space Science and Communication (IconSpace)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting column averaged dry-air mole fractions of carbon dioxide (XCO2) in Peninsular Malaysia by using GOSAT data\",\"authors\":\"Sim Chong Keat, L. H. San, M. Jafri\",\"doi\":\"10.1109/ICONSPACE.2015.7283805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon dioxide (CO2) is the primary anthropogenic GHG and contribute up to 70% of the global warming. It has been associated with climate change which influences land and water resources, food and pasture availability, disappearance of plants and animal species and loss of habitat. The objective of this study was used multiple linear regression (MLR) method to analyze the relationship between the column averaged dry-air mole fractions of carbon dioxide (XCO2) and other atmospheric variables in Peninsular Malaysia based on Greenhouse Gases Observing Satellite (GOSAT) data for the period of 2009-2014. Then XCO2 was predicted using the obtained best-fitting MLR. The results indicated that prediction model with the measured data showed a high correlation coefficient (R2=0.9037), indicating the model's accuracy and efficiency. The GOSAT data are encouraging and capable to examine the increase of the atmosphere greenhouse gases over different regions in Peninsular Malaysia.\",\"PeriodicalId\":150022,\"journal\":{\"name\":\"2015 International Conference on Space Science and Communication (IconSpace)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Space Science and Communication (IconSpace)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONSPACE.2015.7283805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Space Science and Communication (IconSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONSPACE.2015.7283805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳(CO2)是主要的人为温室气体,占全球变暖的70%。它与气候变化有关,气候变化影响到土地和水资源、食物和牧场的供应、动植物物种的消失以及栖息地的丧失。本研究基于2009-2014年马来西亚半岛温室气体观测卫星(GOSAT)数据,采用多元线性回归(MLR)方法分析马来半岛干空气柱平均二氧化碳摩尔分数(XCO2)与其他大气变量的关系。然后利用得到的最佳拟合MLR对XCO2进行预测。结果表明,预测模型与实测数据具有较高的相关系数(R2=0.9037),表明模型的准确性和有效性。GOSAT的数据令人鼓舞,能够检查马来西亚半岛不同地区大气温室气体的增加情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting column averaged dry-air mole fractions of carbon dioxide (XCO2) in Peninsular Malaysia by using GOSAT data
Carbon dioxide (CO2) is the primary anthropogenic GHG and contribute up to 70% of the global warming. It has been associated with climate change which influences land and water resources, food and pasture availability, disappearance of plants and animal species and loss of habitat. The objective of this study was used multiple linear regression (MLR) method to analyze the relationship between the column averaged dry-air mole fractions of carbon dioxide (XCO2) and other atmospheric variables in Peninsular Malaysia based on Greenhouse Gases Observing Satellite (GOSAT) data for the period of 2009-2014. Then XCO2 was predicted using the obtained best-fitting MLR. The results indicated that prediction model with the measured data showed a high correlation coefficient (R2=0.9037), indicating the model's accuracy and efficiency. The GOSAT data are encouraging and capable to examine the increase of the atmosphere greenhouse gases over different regions in Peninsular Malaysia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信