Seong-Jin Kim, Lei Liu, Lei Yao, W. Goh, Yuan Gao, M. Je
{"title":"基于δ调制的尖峰检测的0.5 v亚μ w /通道神经记录IC","authors":"Seong-Jin Kim, Lei Liu, Lei Yao, W. Goh, Yuan Gao, M. Je","doi":"10.1109/ASSCC.2014.7008892","DOIUrl":null,"url":null,"abstract":"A neural recording IC with a new spike detection scheme is proposed to minimize power dissipation while preserving the waveform information of the detected spikes. A delta modulator is employed in the recording IC to reduce signal dynamic range and enable low-voltage operation. A series of output values from the delta modulator are stored in a small amount of analog memory to extract two key features of the neural signal - amplitude and frequency, which are used for accurate spike detection. Using the stored delta values, the precise spike waveform information can be conserved. A prototype recording IC with 16 channels has been fabricated using 0.18-μm CMOS technology. Measurement results demonstrate the spike detection capability successfully. The fabricated IC consumes only 0.88 μW/channel at 0.5-V supply.","PeriodicalId":161031,"journal":{"name":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A 0.5-V sub-μW/channel neural recording IC with delta-modulation-based spike detection\",\"authors\":\"Seong-Jin Kim, Lei Liu, Lei Yao, W. Goh, Yuan Gao, M. Je\",\"doi\":\"10.1109/ASSCC.2014.7008892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural recording IC with a new spike detection scheme is proposed to minimize power dissipation while preserving the waveform information of the detected spikes. A delta modulator is employed in the recording IC to reduce signal dynamic range and enable low-voltage operation. A series of output values from the delta modulator are stored in a small amount of analog memory to extract two key features of the neural signal - amplitude and frequency, which are used for accurate spike detection. Using the stored delta values, the precise spike waveform information can be conserved. A prototype recording IC with 16 channels has been fabricated using 0.18-μm CMOS technology. Measurement results demonstrate the spike detection capability successfully. The fabricated IC consumes only 0.88 μW/channel at 0.5-V supply.\",\"PeriodicalId\":161031,\"journal\":{\"name\":\"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2014.7008892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2014.7008892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 0.5-V sub-μW/channel neural recording IC with delta-modulation-based spike detection
A neural recording IC with a new spike detection scheme is proposed to minimize power dissipation while preserving the waveform information of the detected spikes. A delta modulator is employed in the recording IC to reduce signal dynamic range and enable low-voltage operation. A series of output values from the delta modulator are stored in a small amount of analog memory to extract two key features of the neural signal - amplitude and frequency, which are used for accurate spike detection. Using the stored delta values, the precise spike waveform information can be conserved. A prototype recording IC with 16 channels has been fabricated using 0.18-μm CMOS technology. Measurement results demonstrate the spike detection capability successfully. The fabricated IC consumes only 0.88 μW/channel at 0.5-V supply.