矿床建模的递归神经网络方法

R. Singh, D. Ray, B. Sarkar
{"title":"矿床建模的递归神经网络方法","authors":"R. Singh, D. Ray, B. Sarkar","doi":"10.1109/RAIT.2018.8389063","DOIUrl":null,"url":null,"abstract":"Estimation of grade distribution of iron ore has been attempted using a neural network based model for a banded iron formation (BIF) type iron ore deposit of East India. The model provides an alternative to traditional geostatistical approach. Geostatistical methods assume linear spatial correlation among sample values within a mineral deposit and characterizes various parameters of a mineral deposit. A Recurrent Neural Network (RNN) model, on the other hand, owing to its capability of capturing non-linearity of distribution of a sample space, is suggested to provide estimatesof the iron ore grade. Due to its dynamic training mechanism, RNN model additionally provides a fast and robust solution. Cross-validation of the RNN model has been carried out by comparing its resulting Fe grade outputs with the kriged estimated Fe values. The RNN model provides an improved technique forcogent grade modelling.","PeriodicalId":219972,"journal":{"name":"2018 4th International Conference on Recent Advances in Information Technology (RAIT)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Recurrent neural network approach to mineral deposit modelling\",\"authors\":\"R. Singh, D. Ray, B. Sarkar\",\"doi\":\"10.1109/RAIT.2018.8389063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of grade distribution of iron ore has been attempted using a neural network based model for a banded iron formation (BIF) type iron ore deposit of East India. The model provides an alternative to traditional geostatistical approach. Geostatistical methods assume linear spatial correlation among sample values within a mineral deposit and characterizes various parameters of a mineral deposit. A Recurrent Neural Network (RNN) model, on the other hand, owing to its capability of capturing non-linearity of distribution of a sample space, is suggested to provide estimatesof the iron ore grade. Due to its dynamic training mechanism, RNN model additionally provides a fast and robust solution. Cross-validation of the RNN model has been carried out by comparing its resulting Fe grade outputs with the kriged estimated Fe values. The RNN model provides an improved technique forcogent grade modelling.\",\"PeriodicalId\":219972,\"journal\":{\"name\":\"2018 4th International Conference on Recent Advances in Information Technology (RAIT)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Recent Advances in Information Technology (RAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAIT.2018.8389063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Recent Advances in Information Technology (RAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAIT.2018.8389063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

对东印度某带状铁地层(BIF)型铁矿床进行了基于神经网络模型的铁矿品位分布估计。该模型为传统的地质统计方法提供了另一种选择。地质统计学方法假定矿床内样本值之间的线性空间相关性,并表征矿床的各种参数。另一方面,递归神经网络(RNN)模型由于能够捕获样本空间分布的非线性,因此被建议用于铁矿石品位的估计。由于其动态训练机制,RNN模型还提供了快速和鲁棒的解决方案。通过比较其结果铁品位输出与克里格估计的铁值,对RNN模型进行了交叉验证。RNN模型为强制等级建模提供了一种改进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrent neural network approach to mineral deposit modelling
Estimation of grade distribution of iron ore has been attempted using a neural network based model for a banded iron formation (BIF) type iron ore deposit of East India. The model provides an alternative to traditional geostatistical approach. Geostatistical methods assume linear spatial correlation among sample values within a mineral deposit and characterizes various parameters of a mineral deposit. A Recurrent Neural Network (RNN) model, on the other hand, owing to its capability of capturing non-linearity of distribution of a sample space, is suggested to provide estimatesof the iron ore grade. Due to its dynamic training mechanism, RNN model additionally provides a fast and robust solution. Cross-validation of the RNN model has been carried out by comparing its resulting Fe grade outputs with the kriged estimated Fe values. The RNN model provides an improved technique forcogent grade modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信