压缩感测热图像感测矩阵的比较分析

Usham V. Dias, M. Rane
{"title":"压缩感测热图像感测矩阵的比较分析","authors":"Usham V. Dias, M. Rane","doi":"10.1109/IMAC4S.2013.6526420","DOIUrl":null,"url":null,"abstract":"In the conventional sampling process, in order to reconstruct the signal perfectly Nyquist-Shannon sampling theorem needs to be satisfied. Nyquist-Shannon theorem is a sufficient condition but not a necessary condition for perfect reconstruction. The field of compressive sensing provides a stricter sampling condition when the signal is known to be sparse or compressible. Compressive sensing contains three main problems: sparse representation, measurement matrix and reconstruction algorithm. This paper describes and implements 14 different sensing matrices for thermal image reconstruction using Basis Pursuit algorithm available in the YALL1 package. The sensing matrices include Gaussian random with and without orthogonal rows, Bernoulli random with bipolar entries and binary entries, Fourier with and without dc basis vector, Toeplitz with Gaussian and Bernoulli entries, Circulant with Gaussian and Bernoulli entries, Hadamard with and without dc basis vector, Normalised Hadamard with and without dc basis vector. Orthogonalization of the rows of the Gaussian sensing matrix and normalisation of Hadamard matrix greatly improves the speed of reconstruction. Semi-deterministic Toeplitz and Circulant matrices provide lower PSNR and require more iteration for reconstruction. The Fourier and Hadamard deterministic sensing matrices without dc basis vector worked well in preserving the object of interest, thus paving the way for object specific image reconstruction based on sensing matrices. The sparsifying basis used in this paper was Discrete Cosine Transform and Fourier Transform.","PeriodicalId":403064,"journal":{"name":"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Comparative analysis of sensing matrices for compressed sensed thermal images\",\"authors\":\"Usham V. Dias, M. Rane\",\"doi\":\"10.1109/IMAC4S.2013.6526420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the conventional sampling process, in order to reconstruct the signal perfectly Nyquist-Shannon sampling theorem needs to be satisfied. Nyquist-Shannon theorem is a sufficient condition but not a necessary condition for perfect reconstruction. The field of compressive sensing provides a stricter sampling condition when the signal is known to be sparse or compressible. Compressive sensing contains three main problems: sparse representation, measurement matrix and reconstruction algorithm. This paper describes and implements 14 different sensing matrices for thermal image reconstruction using Basis Pursuit algorithm available in the YALL1 package. The sensing matrices include Gaussian random with and without orthogonal rows, Bernoulli random with bipolar entries and binary entries, Fourier with and without dc basis vector, Toeplitz with Gaussian and Bernoulli entries, Circulant with Gaussian and Bernoulli entries, Hadamard with and without dc basis vector, Normalised Hadamard with and without dc basis vector. Orthogonalization of the rows of the Gaussian sensing matrix and normalisation of Hadamard matrix greatly improves the speed of reconstruction. Semi-deterministic Toeplitz and Circulant matrices provide lower PSNR and require more iteration for reconstruction. The Fourier and Hadamard deterministic sensing matrices without dc basis vector worked well in preserving the object of interest, thus paving the way for object specific image reconstruction based on sensing matrices. The sparsifying basis used in this paper was Discrete Cosine Transform and Fourier Transform.\",\"PeriodicalId\":403064,\"journal\":{\"name\":\"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMAC4S.2013.6526420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMAC4S.2013.6526420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在传统的采样过程中,为了完美地重构信号,需要满足Nyquist-Shannon采样定理。Nyquist-Shannon定理是完全重构的充分条件,但不是必要条件。当已知信号是稀疏或可压缩时,压缩感知领域提供了更严格的采样条件。压缩感知包含三个主要问题:稀疏表示、测量矩阵和重构算法。本文描述并实现了14种不同的传感矩阵,用于使用YALL1包中的基追踪算法进行热图像重建。传感矩阵包括具有和不具有正交行的高斯随机、具有双极项和二元项的伯努利随机、具有和不具有dc基向量的傅立叶、具有高斯和伯努利项的Toeplitz、具有和伯努利项的循环、具有和不具有dc基向量的Hadamard、具有和不具有dc基向量的归一化Hadamard。高斯传感矩阵的行正交化和Hadamard矩阵的归一化大大提高了重建的速度。半确定性Toeplitz矩阵和循环矩阵提供了较低的PSNR,但需要更多的迭代来重建。没有直流基向量的傅里叶和Hadamard确定性感知矩阵在保留感兴趣对象方面表现良好,从而为基于感知矩阵的对象特定图像重建铺平了道路。本文使用的稀疏化基是离散余弦变换和傅里叶变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of sensing matrices for compressed sensed thermal images
In the conventional sampling process, in order to reconstruct the signal perfectly Nyquist-Shannon sampling theorem needs to be satisfied. Nyquist-Shannon theorem is a sufficient condition but not a necessary condition for perfect reconstruction. The field of compressive sensing provides a stricter sampling condition when the signal is known to be sparse or compressible. Compressive sensing contains three main problems: sparse representation, measurement matrix and reconstruction algorithm. This paper describes and implements 14 different sensing matrices for thermal image reconstruction using Basis Pursuit algorithm available in the YALL1 package. The sensing matrices include Gaussian random with and without orthogonal rows, Bernoulli random with bipolar entries and binary entries, Fourier with and without dc basis vector, Toeplitz with Gaussian and Bernoulli entries, Circulant with Gaussian and Bernoulli entries, Hadamard with and without dc basis vector, Normalised Hadamard with and without dc basis vector. Orthogonalization of the rows of the Gaussian sensing matrix and normalisation of Hadamard matrix greatly improves the speed of reconstruction. Semi-deterministic Toeplitz and Circulant matrices provide lower PSNR and require more iteration for reconstruction. The Fourier and Hadamard deterministic sensing matrices without dc basis vector worked well in preserving the object of interest, thus paving the way for object specific image reconstruction based on sensing matrices. The sparsifying basis used in this paper was Discrete Cosine Transform and Fourier Transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信