多类双额SVM算法分类模式

B. P. Tomasouw, Z. A. Leleury
{"title":"多类双额SVM算法分类模式","authors":"B. P. Tomasouw, Z. A. Leleury","doi":"10.30598/tensorvol1iss1pp15-24","DOIUrl":null,"url":null,"abstract":"Pattern recognition is a process of recognizing patterns by using machine learning algorithm. Pattern recognition can be defined as a classification of data based on knowledge that already gained or  information extracted from patterns. One method that can be used in pattern classification problem is SVM. In this study we introduced Twin Bounded SVM which is refinement of Twin SVM. The discussion begins with the linear Twin Bounded SVM method to solve a two-class classification problem and followed by an algorithm to solve multi-class classification problem","PeriodicalId":294430,"journal":{"name":"Tensor: Pure and Applied Mathematics Journal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algoritma Multi-Kelas Twin Bounded SVM Untuk Klasifikasi Pola\",\"authors\":\"B. P. Tomasouw, Z. A. Leleury\",\"doi\":\"10.30598/tensorvol1iss1pp15-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern recognition is a process of recognizing patterns by using machine learning algorithm. Pattern recognition can be defined as a classification of data based on knowledge that already gained or  information extracted from patterns. One method that can be used in pattern classification problem is SVM. In this study we introduced Twin Bounded SVM which is refinement of Twin SVM. The discussion begins with the linear Twin Bounded SVM method to solve a two-class classification problem and followed by an algorithm to solve multi-class classification problem\",\"PeriodicalId\":294430,\"journal\":{\"name\":\"Tensor: Pure and Applied Mathematics Journal\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tensor: Pure and Applied Mathematics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30598/tensorvol1iss1pp15-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tensor: Pure and Applied Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30598/tensorvol1iss1pp15-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模式识别是利用机器学习算法对模式进行识别的过程。模式识别可以定义为基于已经获得的知识或从模式中提取的信息对数据进行分类。支持向量机是一种可以用于模式分类问题的方法。本文引入了Twin Bounded SVM,它是对Twin SVM的改进。首先讨论了求解两类分类问题的线性双界支持向量机方法,然后讨论了求解多类分类问题的算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algoritma Multi-Kelas Twin Bounded SVM Untuk Klasifikasi Pola
Pattern recognition is a process of recognizing patterns by using machine learning algorithm. Pattern recognition can be defined as a classification of data based on knowledge that already gained or  information extracted from patterns. One method that can be used in pattern classification problem is SVM. In this study we introduced Twin Bounded SVM which is refinement of Twin SVM. The discussion begins with the linear Twin Bounded SVM method to solve a two-class classification problem and followed by an algorithm to solve multi-class classification problem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信