{"title":"在二维中支持一类非线性演化方程解的性质","authors":"Eddye Bustamante, José Jiménez Urrea","doi":"10.18273/revint.v39n1-2021003","DOIUrl":null,"url":null,"abstract":"In this work we consider equations of the form ∂tu + P(D)u + u^{l}∂xu = 0, where P(D) is a two-dimensional differential operator, and l ∈ N. We prove that if u is a sufficiently smooth solution of the equation, such that suppu(0), suppu(T) ⊂ [−B, B] × [−B, B] for some B > 0, then there exists R0>0 such that suppu(t) ⊂ [-R_0,R_0]×[-R_0,R_0] for every t ∈ [0, T].","PeriodicalId":402331,"journal":{"name":"Revista Integración","volume":" 32","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propiedades del soporte de soluciones de una clase de ecuaciones de evolución no lineales en dos dimensiones\",\"authors\":\"Eddye Bustamante, José Jiménez Urrea\",\"doi\":\"10.18273/revint.v39n1-2021003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we consider equations of the form ∂tu + P(D)u + u^{l}∂xu = 0, where P(D) is a two-dimensional differential operator, and l ∈ N. We prove that if u is a sufficiently smooth solution of the equation, such that suppu(0), suppu(T) ⊂ [−B, B] × [−B, B] for some B > 0, then there exists R0>0 such that suppu(t) ⊂ [-R_0,R_0]×[-R_0,R_0] for every t ∈ [0, T].\",\"PeriodicalId\":402331,\"journal\":{\"name\":\"Revista Integración\",\"volume\":\" 32\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Integración\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revint.v39n1-2021003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Integración","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revint.v39n1-2021003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Propiedades del soporte de soluciones de una clase de ecuaciones de evolución no lineales en dos dimensiones
In this work we consider equations of the form ∂tu + P(D)u + u^{l}∂xu = 0, where P(D) is a two-dimensional differential operator, and l ∈ N. We prove that if u is a sufficiently smooth solution of the equation, such that suppu(0), suppu(T) ⊂ [−B, B] × [−B, B] for some B > 0, then there exists R0>0 such that suppu(t) ⊂ [-R_0,R_0]×[-R_0,R_0] for every t ∈ [0, T].