K. Umetani, J. Acero, H. Sarnago, Óscar Lucía, E. Hiraki
{"title":"多层绞合的Litz线铜损的简单全解析模型","authors":"K. Umetani, J. Acero, H. Sarnago, Óscar Lucía, E. Hiraki","doi":"10.1109/APEC.2019.8721827","DOIUrl":null,"url":null,"abstract":"The Litz wire has been widely utilized as a wire with a low copper loss under high-frequency operation. However, design optimization of the Litz wire is difficult because this wire generally has a complicated structure of thin strands twisted in multiple levels, which hinders both of the analytical and numerical prediction of the copper loss. To overcome this issue, recent studies have proposed the analytical models of the copper loss in the bundle of twisted strands, which is the basic components constituting the Litz wire. This paper constructs a simple analytical copper loss model of the Litz wire based on these preceding insights. In addition to these insights, the proposed model further considers the effect of the inclination angle of the strands to the Litz wire on the proximity effect loss. The proposed model was tested in comparison with the experimentally measured AC resistance of commercially available Litz wires. As a result, the predicted AC resistance showed good agreement with the measured ac resistance, suggesting the effectiveness of the proposed model.","PeriodicalId":142409,"journal":{"name":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Simple Fully Analytical Copper Loss Model of Litz Wire Made of Strands Twisted in Multiple Levels\",\"authors\":\"K. Umetani, J. Acero, H. Sarnago, Óscar Lucía, E. Hiraki\",\"doi\":\"10.1109/APEC.2019.8721827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Litz wire has been widely utilized as a wire with a low copper loss under high-frequency operation. However, design optimization of the Litz wire is difficult because this wire generally has a complicated structure of thin strands twisted in multiple levels, which hinders both of the analytical and numerical prediction of the copper loss. To overcome this issue, recent studies have proposed the analytical models of the copper loss in the bundle of twisted strands, which is the basic components constituting the Litz wire. This paper constructs a simple analytical copper loss model of the Litz wire based on these preceding insights. In addition to these insights, the proposed model further considers the effect of the inclination angle of the strands to the Litz wire on the proximity effect loss. The proposed model was tested in comparison with the experimentally measured AC resistance of commercially available Litz wires. As a result, the predicted AC resistance showed good agreement with the measured ac resistance, suggesting the effectiveness of the proposed model.\",\"PeriodicalId\":142409,\"journal\":{\"name\":\"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2019.8721827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2019.8721827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simple Fully Analytical Copper Loss Model of Litz Wire Made of Strands Twisted in Multiple Levels
The Litz wire has been widely utilized as a wire with a low copper loss under high-frequency operation. However, design optimization of the Litz wire is difficult because this wire generally has a complicated structure of thin strands twisted in multiple levels, which hinders both of the analytical and numerical prediction of the copper loss. To overcome this issue, recent studies have proposed the analytical models of the copper loss in the bundle of twisted strands, which is the basic components constituting the Litz wire. This paper constructs a simple analytical copper loss model of the Litz wire based on these preceding insights. In addition to these insights, the proposed model further considers the effect of the inclination angle of the strands to the Litz wire on the proximity effect loss. The proposed model was tested in comparison with the experimentally measured AC resistance of commercially available Litz wires. As a result, the predicted AC resistance showed good agreement with the measured ac resistance, suggesting the effectiveness of the proposed model.