基于邻近的DTN表征

Tiphaine Phe-Neau, M. Amorim, V. Conan
{"title":"基于邻近的DTN表征","authors":"Tiphaine Phe-Neau, M. Amorim, V. Conan","doi":"10.1145/2159576.2159586","DOIUrl":null,"url":null,"abstract":"We relax the traditional definition of contact and intercontact times by bringing the notion of vicinity into the game. We propose to analyze disruption-tolerant networks (DTN) under the assumption that nodes are in k-contact when they remain within a few hops from each other and in k-intercontact otherwise (where k is the maximum number of hops characterizing the vicinity). We make interesting observations when analyzing several real-world and synthetic mobility traces. We detect a number of unexpected behaviors when analyzing k-contact distributions; in particular, we observe that in some datasets the average k-contact time decreases as we increase k. In fact, we observe that many nodes spend a non-negligible amount of time in each other's vicinity without coming into direct contact. We also show that a small k (typically between 3 and 4) is sufficient to capture most communication opportunities.","PeriodicalId":198518,"journal":{"name":"International Workshop on Mobile Opportunistic Networks","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Vicinity-based DTN characterization\",\"authors\":\"Tiphaine Phe-Neau, M. Amorim, V. Conan\",\"doi\":\"10.1145/2159576.2159586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We relax the traditional definition of contact and intercontact times by bringing the notion of vicinity into the game. We propose to analyze disruption-tolerant networks (DTN) under the assumption that nodes are in k-contact when they remain within a few hops from each other and in k-intercontact otherwise (where k is the maximum number of hops characterizing the vicinity). We make interesting observations when analyzing several real-world and synthetic mobility traces. We detect a number of unexpected behaviors when analyzing k-contact distributions; in particular, we observe that in some datasets the average k-contact time decreases as we increase k. In fact, we observe that many nodes spend a non-negligible amount of time in each other's vicinity without coming into direct contact. We also show that a small k (typically between 3 and 4) is sufficient to capture most communication opportunities.\",\"PeriodicalId\":198518,\"journal\":{\"name\":\"International Workshop on Mobile Opportunistic Networks\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Mobile Opportunistic Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2159576.2159586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Mobile Opportunistic Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2159576.2159586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们将接触和相互接触时间的传统定义放宽,将接近的概念引入游戏中。我们建议在以下假设下分析容中断网络(DTN):当节点彼此保持在几跳以内时处于k接触状态,否则处于k相互接触状态(其中k是表征附近的最大跳数)。在分析几个真实世界和合成的移动轨迹时,我们进行了有趣的观察。在分析k-接触分布时,我们检测到许多意想不到的行为;特别是,我们观察到,在一些数据集中,平均k-接触时间随着k的增加而减少。事实上,我们观察到许多节点在彼此附近花费了不可忽略的时间,而没有直接接触。我们还表明,较小的k(通常在3到4之间)足以捕获大多数通信机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vicinity-based DTN characterization
We relax the traditional definition of contact and intercontact times by bringing the notion of vicinity into the game. We propose to analyze disruption-tolerant networks (DTN) under the assumption that nodes are in k-contact when they remain within a few hops from each other and in k-intercontact otherwise (where k is the maximum number of hops characterizing the vicinity). We make interesting observations when analyzing several real-world and synthetic mobility traces. We detect a number of unexpected behaviors when analyzing k-contact distributions; in particular, we observe that in some datasets the average k-contact time decreases as we increase k. In fact, we observe that many nodes spend a non-negligible amount of time in each other's vicinity without coming into direct contact. We also show that a small k (typically between 3 and 4) is sufficient to capture most communication opportunities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信