{"title":"基于贝叶斯网络的任意时间概率切换模型","authors":"Shiva Shankar Ramani, S. Bhanja","doi":"10.1145/1013235.1013263","DOIUrl":null,"url":null,"abstract":"Modeling and estimation of switching activities remain to be important problems in low-power design and fault analysis. A probabilistic Bayesian network based switching model can explicitly model all spatio-temporal dependency relationships in a combinational circuit, resulting in zero-error estimates. However, the space-time requirements of exact estimation schemes, based on this model, increase with circuit complexity. This paper explores a non-simulative, importance sampling based, probabilistic estimation strategy that scales well with circuit complexity. It has the any-time aspect of simulation and the input pattern independence of probabilistic models.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Any-time probabilistic switching model using Bayesian networks\",\"authors\":\"Shiva Shankar Ramani, S. Bhanja\",\"doi\":\"10.1145/1013235.1013263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling and estimation of switching activities remain to be important problems in low-power design and fault analysis. A probabilistic Bayesian network based switching model can explicitly model all spatio-temporal dependency relationships in a combinational circuit, resulting in zero-error estimates. However, the space-time requirements of exact estimation schemes, based on this model, increase with circuit complexity. This paper explores a non-simulative, importance sampling based, probabilistic estimation strategy that scales well with circuit complexity. It has the any-time aspect of simulation and the input pattern independence of probabilistic models.\",\"PeriodicalId\":120002,\"journal\":{\"name\":\"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1013235.1013263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013235.1013263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Any-time probabilistic switching model using Bayesian networks
Modeling and estimation of switching activities remain to be important problems in low-power design and fault analysis. A probabilistic Bayesian network based switching model can explicitly model all spatio-temporal dependency relationships in a combinational circuit, resulting in zero-error estimates. However, the space-time requirements of exact estimation schemes, based on this model, increase with circuit complexity. This paper explores a non-simulative, importance sampling based, probabilistic estimation strategy that scales well with circuit complexity. It has the any-time aspect of simulation and the input pattern independence of probabilistic models.