{"title":"多通道输入深度卷积神经网络用于乳房x线影像诊断","authors":"J. Bae, J. Park, J. Park, M. Sunwoo","doi":"10.1109/ISOCC50952.2020.9333038","DOIUrl":null,"url":null,"abstract":"Medical image diagnosis should consider the information contained in multiple images, not just a single image, such as natural image classification. Mammography is the most basic X-ray screening method for diagnosing breast cancer, and mammograms have four images per patient. Convolutional neural networks should be able to diagnose using these four images. This paper proposes a convolutional neural network to simultaneously concatenate four images to solve the multi-view problem. The proposed network was trained and validated with the digital database for screening mammography (DDSM) and achieved 0.952 area under the ROC curve (AUC) for the two-class problem (positive vs. negative). This paper also proposes a new approach to localize lesions without patch labels or mask labels.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-Channel Input Deep Convolutional Neural Network for Mammogram Diagnosis\",\"authors\":\"J. Bae, J. Park, J. Park, M. Sunwoo\",\"doi\":\"10.1109/ISOCC50952.2020.9333038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical image diagnosis should consider the information contained in multiple images, not just a single image, such as natural image classification. Mammography is the most basic X-ray screening method for diagnosing breast cancer, and mammograms have four images per patient. Convolutional neural networks should be able to diagnose using these four images. This paper proposes a convolutional neural network to simultaneously concatenate four images to solve the multi-view problem. The proposed network was trained and validated with the digital database for screening mammography (DDSM) and achieved 0.952 area under the ROC curve (AUC) for the two-class problem (positive vs. negative). This paper also proposes a new approach to localize lesions without patch labels or mask labels.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9333038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9333038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Channel Input Deep Convolutional Neural Network for Mammogram Diagnosis
Medical image diagnosis should consider the information contained in multiple images, not just a single image, such as natural image classification. Mammography is the most basic X-ray screening method for diagnosing breast cancer, and mammograms have four images per patient. Convolutional neural networks should be able to diagnose using these four images. This paper proposes a convolutional neural network to simultaneously concatenate four images to solve the multi-view problem. The proposed network was trained and validated with the digital database for screening mammography (DDSM) and achieved 0.952 area under the ROC curve (AUC) for the two-class problem (positive vs. negative). This paper also proposes a new approach to localize lesions without patch labels or mask labels.