基于PSO的输电网扩容规划

A. Simo, C. Barbulescu, S. Kilyeni, A. Deacu
{"title":"基于PSO的输电网扩容规划","authors":"A. Simo, C. Barbulescu, S. Kilyeni, A. Deacu","doi":"10.1109/MELCON.2014.6820589","DOIUrl":null,"url":null,"abstract":"The transmission network expansion planning (TNEP) problem is tackled within this paper. The TNEP study is approached for a real power system designed based on the Western and South-Western parts of the Romanian Power System. The study is performed considering 3 consumed power evolution scenarios and power transfers. The complete a.c. power flow computing mathematical model has been applied. To solve this problem the particle swarm optimization (PSO) technique (artificial intelligence field) is used. Few practical considerations are presented, followed by the developed software tool. The results are discussed in details for one case and for the other two cases, they are summarized.","PeriodicalId":103316,"journal":{"name":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"PSO based transmission network expansion planning\",\"authors\":\"A. Simo, C. Barbulescu, S. Kilyeni, A. Deacu\",\"doi\":\"10.1109/MELCON.2014.6820589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transmission network expansion planning (TNEP) problem is tackled within this paper. The TNEP study is approached for a real power system designed based on the Western and South-Western parts of the Romanian Power System. The study is performed considering 3 consumed power evolution scenarios and power transfers. The complete a.c. power flow computing mathematical model has been applied. To solve this problem the particle swarm optimization (PSO) technique (artificial intelligence field) is used. Few practical considerations are presented, followed by the developed software tool. The results are discussed in details for one case and for the other two cases, they are summarized.\",\"PeriodicalId\":103316,\"journal\":{\"name\":\"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELCON.2014.6820589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2014.6820589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文主要研究输电网扩容规划问题。TNEP研究是针对基于罗马尼亚电力系统西部和西南部分设计的实际电力系统进行的。该研究考虑了3种消耗功率演变场景和功率传输。应用了完整的交流潮流计算数学模型。为了解决这一问题,采用了人工智能领域的粒子群优化技术(PSO)。提出了一些实际的考虑,然后是开发的软件工具。对其中一个案例的结果进行了详细的讨论,并对另外两个案例的结果进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PSO based transmission network expansion planning
The transmission network expansion planning (TNEP) problem is tackled within this paper. The TNEP study is approached for a real power system designed based on the Western and South-Western parts of the Romanian Power System. The study is performed considering 3 consumed power evolution scenarios and power transfers. The complete a.c. power flow computing mathematical model has been applied. To solve this problem the particle swarm optimization (PSO) technique (artificial intelligence field) is used. Few practical considerations are presented, followed by the developed software tool. The results are discussed in details for one case and for the other two cases, they are summarized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信