{"title":"fpga高级合成中从软件线程到并行硬件","authors":"Jongsok Choi, S. Brown, J. Anderson","doi":"10.1109/FPT.2013.6718365","DOIUrl":null,"url":null,"abstract":"We describe the support within high-level hardware synthesis (HLS) for two standard software parallelization paradigms: Pthreads and OpenMP. Parallel code segments, as specified in the software, are automatically synthesized by our HLS tool into parallel-operating hardware sub-circuits. Both data parallelism and task-level parallelism are supported, as is the combined use of both Pthreads and OpenMP. Moreover, our work also provides automated synthesis for commonly occurring synchronization constructs within the Pthreads/OpenMP library: mutual exclusion (mutex) and barriers. Essentially, our framework allows a software engineer to specify parallelism to an HLS tool using methodologies they are likely to be familiar with. An experimental study considers a variety of parallelization scenarios, including demonstrated speedups of up to 12.9× in circuit wall-clock time for the 16-thread case and area-delay product as low as 12% (~8× improvement) when using 4 pipelined hardware threads.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"From software threads to parallel hardware in high-level synthesis for FPGAs\",\"authors\":\"Jongsok Choi, S. Brown, J. Anderson\",\"doi\":\"10.1109/FPT.2013.6718365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the support within high-level hardware synthesis (HLS) for two standard software parallelization paradigms: Pthreads and OpenMP. Parallel code segments, as specified in the software, are automatically synthesized by our HLS tool into parallel-operating hardware sub-circuits. Both data parallelism and task-level parallelism are supported, as is the combined use of both Pthreads and OpenMP. Moreover, our work also provides automated synthesis for commonly occurring synchronization constructs within the Pthreads/OpenMP library: mutual exclusion (mutex) and barriers. Essentially, our framework allows a software engineer to specify parallelism to an HLS tool using methodologies they are likely to be familiar with. An experimental study considers a variety of parallelization scenarios, including demonstrated speedups of up to 12.9× in circuit wall-clock time for the 16-thread case and area-delay product as low as 12% (~8× improvement) when using 4 pipelined hardware threads.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From software threads to parallel hardware in high-level synthesis for FPGAs
We describe the support within high-level hardware synthesis (HLS) for two standard software parallelization paradigms: Pthreads and OpenMP. Parallel code segments, as specified in the software, are automatically synthesized by our HLS tool into parallel-operating hardware sub-circuits. Both data parallelism and task-level parallelism are supported, as is the combined use of both Pthreads and OpenMP. Moreover, our work also provides automated synthesis for commonly occurring synchronization constructs within the Pthreads/OpenMP library: mutual exclusion (mutex) and barriers. Essentially, our framework allows a software engineer to specify parallelism to an HLS tool using methodologies they are likely to be familiar with. An experimental study considers a variety of parallelization scenarios, including demonstrated speedups of up to 12.9× in circuit wall-clock time for the 16-thread case and area-delay product as low as 12% (~8× improvement) when using 4 pipelined hardware threads.