高温电子设备用热电冷却器的性能评估

K. Moores, Y. Joshi, G. Miller
{"title":"高温电子设备用热电冷却器的性能评估","authors":"K. Moores, Y. Joshi, G. Miller","doi":"10.1109/ICT.1999.843328","DOIUrl":null,"url":null,"abstract":"Thermoelectric cooling (TEC) modules which are rated for operation up to 200/spl deg/C are now widely available commercially, making them potential candidates for use in the thermal management of high temperature electronics applications. Through the use of these TECs, traditional electronic devices could be employed at much higher temperatures than they might otherwise tolerate, by creating a low temperature \"micro-environment\" around the specific components of interest, To gauge the feasibility of using TECs for high temperature thermal management, a single stage TEC was operated at constant current, near its maximum temperature limit for up to 1500 hours to assess the long term effect of elevated temperature on the module's performance. Results of the test showed a gradual decline in the overall temperature differential generated by the TEC during powered operation. Analysis of the exposed module by E-SEM suggests diffusion of Te from the thermoelements into the Bi solder region and a degradation of the Ni diffusion barrier between the copper tabs and the bismuth solder layer.","PeriodicalId":253439,"journal":{"name":"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Performance assessment of thermoelectric coolers for use in high temperature electronics applications\",\"authors\":\"K. Moores, Y. Joshi, G. Miller\",\"doi\":\"10.1109/ICT.1999.843328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoelectric cooling (TEC) modules which are rated for operation up to 200/spl deg/C are now widely available commercially, making them potential candidates for use in the thermal management of high temperature electronics applications. Through the use of these TECs, traditional electronic devices could be employed at much higher temperatures than they might otherwise tolerate, by creating a low temperature \\\"micro-environment\\\" around the specific components of interest, To gauge the feasibility of using TECs for high temperature thermal management, a single stage TEC was operated at constant current, near its maximum temperature limit for up to 1500 hours to assess the long term effect of elevated temperature on the module's performance. Results of the test showed a gradual decline in the overall temperature differential generated by the TEC during powered operation. Analysis of the exposed module by E-SEM suggests diffusion of Te from the thermoelements into the Bi solder region and a degradation of the Ni diffusion barrier between the copper tabs and the bismuth solder layer.\",\"PeriodicalId\":253439,\"journal\":{\"name\":\"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.1999.843328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1999.843328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

热电冷却(TEC)模块的额定工作温度高达200/spl度/C,现在在商业上广泛使用,使其成为高温电子应用热管理的潜在候选者。通过使用这些TEC,传统的电子设备可以在比它们可能承受的更高的温度下使用,通过在感兴趣的特定组件周围创建低温“微环境”。为了衡量使用TEC进行高温热管理的可行性,在恒流下运行单级TEC。在接近其最高温度极限的情况下长达1500小时,以评估温度升高对模块性能的长期影响。测试结果表明,在通电运行期间,TEC产生的总体温差逐渐下降。通过电子扫描电镜对暴露模块的分析表明,Te从热元件扩散到Bi焊料区,并且铜片和铋焊料层之间的Ni扩散屏障退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance assessment of thermoelectric coolers for use in high temperature electronics applications
Thermoelectric cooling (TEC) modules which are rated for operation up to 200/spl deg/C are now widely available commercially, making them potential candidates for use in the thermal management of high temperature electronics applications. Through the use of these TECs, traditional electronic devices could be employed at much higher temperatures than they might otherwise tolerate, by creating a low temperature "micro-environment" around the specific components of interest, To gauge the feasibility of using TECs for high temperature thermal management, a single stage TEC was operated at constant current, near its maximum temperature limit for up to 1500 hours to assess the long term effect of elevated temperature on the module's performance. Results of the test showed a gradual decline in the overall temperature differential generated by the TEC during powered operation. Analysis of the exposed module by E-SEM suggests diffusion of Te from the thermoelements into the Bi solder region and a degradation of the Ni diffusion barrier between the copper tabs and the bismuth solder layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信