新兴内存技术对大数据应用的性能影响:一种延迟可编程系统仿真方法

Mu-Tien Chang, I. Choi, Dimin Niu, Hongzhong Zheng
{"title":"新兴内存技术对大数据应用的性能影响:一种延迟可编程系统仿真方法","authors":"Mu-Tien Chang, I. Choi, Dimin Niu, Hongzhong Zheng","doi":"10.1145/3194554.3194633","DOIUrl":null,"url":null,"abstract":"This paper presents a performance analysis framework for studying emerging memories. The key component of the framework is a memory-latency programmable emulator, which is based on a FPGA-attached server system. The emulator allows users extend read and/or write latency. In addition, we use regression models to enable system performance studies for memory latencies beyond hardware limitations. Finally, we demonstrate Spark application case studies, analyzing the impact of two key characteristics of emerging memories: extended memory access times and enlarged memory capacities. Results show that the benefit of high capacity memory could outweigh the performance loss due to longer memory latency.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"380 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Impact of Emerging Memory Technologies on Big Data Applications: A Latency-Programmable System Emulation Approach\",\"authors\":\"Mu-Tien Chang, I. Choi, Dimin Niu, Hongzhong Zheng\",\"doi\":\"10.1145/3194554.3194633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a performance analysis framework for studying emerging memories. The key component of the framework is a memory-latency programmable emulator, which is based on a FPGA-attached server system. The emulator allows users extend read and/or write latency. In addition, we use regression models to enable system performance studies for memory latencies beyond hardware limitations. Finally, we demonstrate Spark application case studies, analyzing the impact of two key characteristics of emerging memories: extended memory access times and enlarged memory capacities. Results show that the benefit of high capacity memory could outweigh the performance loss due to longer memory latency.\",\"PeriodicalId\":215940,\"journal\":{\"name\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"volume\":\"380 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194554.3194633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3194633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一个研究新兴记忆的性能分析框架。该框架的关键部件是基于fpga服务器系统的内存延迟可编程仿真器。仿真器允许用户扩展读和/或写延迟。此外,我们使用回归模型来实现超出硬件限制的内存延迟的系统性能研究。最后,我们展示了Spark应用案例研究,分析了新兴存储器的两个关键特征的影响:扩展的存储器访问时间和增大的存储器容量。结果表明,高容量内存的好处可能超过由于较长的内存延迟而造成的性能损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Impact of Emerging Memory Technologies on Big Data Applications: A Latency-Programmable System Emulation Approach
This paper presents a performance analysis framework for studying emerging memories. The key component of the framework is a memory-latency programmable emulator, which is based on a FPGA-attached server system. The emulator allows users extend read and/or write latency. In addition, we use regression models to enable system performance studies for memory latencies beyond hardware limitations. Finally, we demonstrate Spark application case studies, analyzing the impact of two key characteristics of emerging memories: extended memory access times and enlarged memory capacities. Results show that the benefit of high capacity memory could outweigh the performance loss due to longer memory latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信