一种新的重复过程状态估计算法:迭代学习观测器(ILO)

J. Hätönen, K. Moore
{"title":"一种新的重复过程状态估计算法:迭代学习观测器(ILO)","authors":"J. Hätönen, K. Moore","doi":"10.1109/ISIC.2007.4450890","DOIUrl":null,"url":null,"abstract":"Iterative learning control (ILC) has been established as a very powerful technique to achieve high performance control for repetitive processes. In addition to the ILC problem, in the literature researchers have considered related paradigms such as iterative feedback tuning and iterative parameter estimation and identification. In the paper we introduce another related problem: the iterative learning observer. This dual problem establishes algorithms that can achieve high performance estimation of states for iterative processes. In order to solve the dual problem, this paper develops an estimation algorithm that estimates states asymptotically along the iteration axis. The theoretical findings are illustrated through simulation examples.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A New Arimoto-Type Algorithm to Estimate States for Repetitive Processes: Iterative Learning Observer (ILO)\",\"authors\":\"J. Hätönen, K. Moore\",\"doi\":\"10.1109/ISIC.2007.4450890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iterative learning control (ILC) has been established as a very powerful technique to achieve high performance control for repetitive processes. In addition to the ILC problem, in the literature researchers have considered related paradigms such as iterative feedback tuning and iterative parameter estimation and identification. In the paper we introduce another related problem: the iterative learning observer. This dual problem establishes algorithms that can achieve high performance estimation of states for iterative processes. In order to solve the dual problem, this paper develops an estimation algorithm that estimates states asymptotically along the iteration axis. The theoretical findings are illustrated through simulation examples.\",\"PeriodicalId\":184867,\"journal\":{\"name\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2007.4450890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

迭代学习控制(ILC)是一种非常强大的技术,可以实现对重复过程的高性能控制。除了ILC问题,在文献中研究人员还考虑了相关的范式,如迭代反馈调谐和迭代参数估计与识别。本文引入了另一个相关问题:迭代学习观测器。该对偶问题建立了能够实现迭代过程状态高性能估计的算法。为了解决对偶问题,本文提出了一种沿迭代轴渐近估计状态的估计算法。通过仿真实例对理论结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Arimoto-Type Algorithm to Estimate States for Repetitive Processes: Iterative Learning Observer (ILO)
Iterative learning control (ILC) has been established as a very powerful technique to achieve high performance control for repetitive processes. In addition to the ILC problem, in the literature researchers have considered related paradigms such as iterative feedback tuning and iterative parameter estimation and identification. In the paper we introduce another related problem: the iterative learning observer. This dual problem establishes algorithms that can achieve high performance estimation of states for iterative processes. In order to solve the dual problem, this paper develops an estimation algorithm that estimates states asymptotically along the iteration axis. The theoretical findings are illustrated through simulation examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信