Lucas Pimenta de Souza, Paulo V. C. Batista, Petrônio C. L. Silva
{"title":"一种新的RBF神经网络半径估计启发式算法","authors":"Lucas Pimenta de Souza, Paulo V. C. Batista, Petrônio C. L. Silva","doi":"10.5753/eniac.2021.18252","DOIUrl":null,"url":null,"abstract":"Redes Neurais baseadas em Funções de Base Radial (RBFNN) são métodos clássicos do aprendizado de máquina que contêm uma camada de Funções de Base Radial (RBF) que atuam como extrator de características para a camada final, que executa o reconhecimento de padrões. A estimação do raio das RBFs é uma das atividades mais cruciais do treinamento de modelos RBFNN e afeta diretamente o seu poder de generalização e acurácia. Neste trabalho é apresentado uma nova heurística para estimação do raio e experimentos computacionais são empregados para medir sua eficácia comparada à outras abordagens usando 14 problemas de classificação. A método proposta mostrou uma eficácia competitiva, vencendo os demais métodos em 9 dos 14 problemas.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Heuristic for Radius Estimation in RBF Neural Networks\",\"authors\":\"Lucas Pimenta de Souza, Paulo V. C. Batista, Petrônio C. L. Silva\",\"doi\":\"10.5753/eniac.2021.18252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Redes Neurais baseadas em Funções de Base Radial (RBFNN) são métodos clássicos do aprendizado de máquina que contêm uma camada de Funções de Base Radial (RBF) que atuam como extrator de características para a camada final, que executa o reconhecimento de padrões. A estimação do raio das RBFs é uma das atividades mais cruciais do treinamento de modelos RBFNN e afeta diretamente o seu poder de generalização e acurácia. Neste trabalho é apresentado uma nova heurística para estimação do raio e experimentos computacionais são empregados para medir sua eficácia comparada à outras abordagens usando 14 problemas de classificação. A método proposta mostrou uma eficácia competitiva, vencendo os demais métodos em 9 dos 14 problemas.\",\"PeriodicalId\":318676,\"journal\":{\"name\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2021.18252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Heuristic for Radius Estimation in RBF Neural Networks
Redes Neurais baseadas em Funções de Base Radial (RBFNN) são métodos clássicos do aprendizado de máquina que contêm uma camada de Funções de Base Radial (RBF) que atuam como extrator de características para a camada final, que executa o reconhecimento de padrões. A estimação do raio das RBFs é uma das atividades mais cruciais do treinamento de modelos RBFNN e afeta diretamente o seu poder de generalização e acurácia. Neste trabalho é apresentado uma nova heurística para estimação do raio e experimentos computacionais são empregados para medir sua eficácia comparada à outras abordagens usando 14 problemas de classificação. A método proposta mostrou uma eficácia competitiva, vencendo os demais métodos em 9 dos 14 problemas.