物理不可克隆函数建模的高效迁移学习

Qian Wang, Omid Aramoon, Pengfei Qiu, G. Qu
{"title":"物理不可克隆函数建模的高效迁移学习","authors":"Qian Wang, Omid Aramoon, Pengfei Qiu, G. Qu","doi":"10.1109/ISQED48828.2020.9137057","DOIUrl":null,"url":null,"abstract":"Physical Unclonable Function (PUF) is seen as a promising alternative to traditional cryptographic algorithms for secure and lightweight device authentication for the diverse IoT use cases. However, the essential security of PUF is threatened by a kind of machine learning (ML) based modeling attacks which could successfully impersonate the PUF by using known challenge and response pairs (CPRs). However, existing modeling methods require access to an extremely large set of CRPs which makes them unrealistic and impractical in the real world scenarios. To handle the limitation of available CRPs from the attack perspective, we explore the possibility to transfer a well-tuned model trained with unlimited CRPs to a target PUF with limited number of CRPs. Experimental results show that the proposed transfer learning-based scheme could achieve the same accuracy level with 64% less of CRPs in average. Besides, we also evaluate the proposed transfer learning method with side-channel information and it demonstrates in reducing the number of CRPs significantly.","PeriodicalId":225828,"journal":{"name":"2020 21st International Symposium on Quality Electronic Design (ISQED)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Transfer Learning on Modeling Physical Unclonable Functions\",\"authors\":\"Qian Wang, Omid Aramoon, Pengfei Qiu, G. Qu\",\"doi\":\"10.1109/ISQED48828.2020.9137057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical Unclonable Function (PUF) is seen as a promising alternative to traditional cryptographic algorithms for secure and lightweight device authentication for the diverse IoT use cases. However, the essential security of PUF is threatened by a kind of machine learning (ML) based modeling attacks which could successfully impersonate the PUF by using known challenge and response pairs (CPRs). However, existing modeling methods require access to an extremely large set of CRPs which makes them unrealistic and impractical in the real world scenarios. To handle the limitation of available CRPs from the attack perspective, we explore the possibility to transfer a well-tuned model trained with unlimited CRPs to a target PUF with limited number of CRPs. Experimental results show that the proposed transfer learning-based scheme could achieve the same accuracy level with 64% less of CRPs in average. Besides, we also evaluate the proposed transfer learning method with side-channel information and it demonstrates in reducing the number of CRPs significantly.\",\"PeriodicalId\":225828,\"journal\":{\"name\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED48828.2020.9137057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED48828.2020.9137057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物理不可克隆功能(PUF)被视为传统加密算法的一种有前途的替代方案,可用于各种物联网用例的安全和轻量级设备认证。然而,PUF的本质安全性受到一种基于机器学习(ML)的建模攻击的威胁,这种攻击可以通过使用已知的挑战和响应对(cpr)成功地模拟PUF。然而,现有的建模方法需要访问非常大的crp集,这使得它们在现实世界的场景中不现实和不切实际。为了从攻击的角度处理可用crp的限制,我们探索了将具有无限crp训练的良好调优模型转移到具有有限数量crp的目标PUF的可能性。实验结果表明,基于迁移学习的方法可以达到相同的准确率水平,平均减少64%的crp。此外,我们还对所提出的带有侧信道信息的迁移学习方法进行了评估,结果表明该方法显著减少了crp的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Transfer Learning on Modeling Physical Unclonable Functions
Physical Unclonable Function (PUF) is seen as a promising alternative to traditional cryptographic algorithms for secure and lightweight device authentication for the diverse IoT use cases. However, the essential security of PUF is threatened by a kind of machine learning (ML) based modeling attacks which could successfully impersonate the PUF by using known challenge and response pairs (CPRs). However, existing modeling methods require access to an extremely large set of CRPs which makes them unrealistic and impractical in the real world scenarios. To handle the limitation of available CRPs from the attack perspective, we explore the possibility to transfer a well-tuned model trained with unlimited CRPs to a target PUF with limited number of CRPs. Experimental results show that the proposed transfer learning-based scheme could achieve the same accuracy level with 64% less of CRPs in average. Besides, we also evaluate the proposed transfer learning method with side-channel information and it demonstrates in reducing the number of CRPs significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信