基于Haar-Like强度特征和多阈值特征的AdaBoost人脸检测

Shigang Chen, Xiaohu Ma, Shukui Zhang
{"title":"基于Haar-Like强度特征和多阈值特征的AdaBoost人脸检测","authors":"Shigang Chen, Xiaohu Ma, Shukui Zhang","doi":"10.1109/CMSP.2011.58","DOIUrl":null,"url":null,"abstract":"Effected by illumination and complex background, Haar-like feature values have a large change, and cannot sufficiently represent the face image texture information. By analyzing the distribution of Haar-like feature values, we propose a new type of classifiers called Haar-like intensity feature. Experimental results on some hand-labeled examples and MIT-CMU test dataset illustrate that the AdaBoost algorithm using the extensive features can reduce detection time and make higher face detection rate with fewer simple classifiers.","PeriodicalId":309902,"journal":{"name":"2011 International Conference on Multimedia and Signal Processing","volume":"27 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"AdaBoost Face Detection Based on Haar-Like Intensity Features and Multi-threshold Features\",\"authors\":\"Shigang Chen, Xiaohu Ma, Shukui Zhang\",\"doi\":\"10.1109/CMSP.2011.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effected by illumination and complex background, Haar-like feature values have a large change, and cannot sufficiently represent the face image texture information. By analyzing the distribution of Haar-like feature values, we propose a new type of classifiers called Haar-like intensity feature. Experimental results on some hand-labeled examples and MIT-CMU test dataset illustrate that the AdaBoost algorithm using the extensive features can reduce detection time and make higher face detection rate with fewer simple classifiers.\",\"PeriodicalId\":309902,\"journal\":{\"name\":\"2011 International Conference on Multimedia and Signal Processing\",\"volume\":\"27 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Multimedia and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMSP.2011.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Multimedia and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMSP.2011.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

受光照和复杂背景的影响,类哈尔特征值变化较大,不能充分代表人脸图像的纹理信息。通过分析Haar-like特征值的分布,我们提出了一种新的分类器——Haar-like强度特征。在一些手工标记样例和MIT-CMU测试数据集上的实验结果表明,使用广泛特征的AdaBoost算法可以在较少的简单分类器的情况下减少检测时间,提高人脸检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AdaBoost Face Detection Based on Haar-Like Intensity Features and Multi-threshold Features
Effected by illumination and complex background, Haar-like feature values have a large change, and cannot sufficiently represent the face image texture information. By analyzing the distribution of Haar-like feature values, we propose a new type of classifiers called Haar-like intensity feature. Experimental results on some hand-labeled examples and MIT-CMU test dataset illustrate that the AdaBoost algorithm using the extensive features can reduce detection time and make higher face detection rate with fewer simple classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信