碳对应变硅生长的贡献,掺杂剂在硅中的活化和扩散

H. Itokawa
{"title":"碳对应变硅生长的贡献,掺杂剂在硅中的活化和扩散","authors":"H. Itokawa","doi":"10.1109/IWJT.2010.5474981","DOIUrl":null,"url":null,"abstract":"C incorporation into Si and SiGe has become essential in modern high-performance CMOSFET technology. The reason is that C atom is markedly useful in growing strained Si film and controlling diffusion of dopant atoms in Si and SiGe layers. In this paper, contribution of C atoms to the growth of strained Si and SiGe films, the activation and the diffusion of B in Si are described. Interstitial C atoms inhibit an epitaxial growth of strained Si:C and SiGe films in both case for the C implantation followed by annealing and for the epitaxial growth of SiGe:C by RP-CVD. Suppressions of the localized change in strain caused by C incorporation and the localized C atoms successfully achieve a high-crystallinity strained Si:C and SiGe:C films with a high substitutional concentration. A B activation ratio in Si varies depending on incorporated C concentration in the wide range of C and B concentration. Furthermore, C atoms enhance the growth of stable B-containing clusters at a high B concentration region in Si, resulting in decrease in the B activation ratio in Si layer.","PeriodicalId":205070,"journal":{"name":"2010 International Workshop on Junction Technology Extended Abstracts","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contributionxc of carbon to growth of strained silicon, dopant activation and diffusion in silicon\",\"authors\":\"H. Itokawa\",\"doi\":\"10.1109/IWJT.2010.5474981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"C incorporation into Si and SiGe has become essential in modern high-performance CMOSFET technology. The reason is that C atom is markedly useful in growing strained Si film and controlling diffusion of dopant atoms in Si and SiGe layers. In this paper, contribution of C atoms to the growth of strained Si and SiGe films, the activation and the diffusion of B in Si are described. Interstitial C atoms inhibit an epitaxial growth of strained Si:C and SiGe films in both case for the C implantation followed by annealing and for the epitaxial growth of SiGe:C by RP-CVD. Suppressions of the localized change in strain caused by C incorporation and the localized C atoms successfully achieve a high-crystallinity strained Si:C and SiGe:C films with a high substitutional concentration. A B activation ratio in Si varies depending on incorporated C concentration in the wide range of C and B concentration. Furthermore, C atoms enhance the growth of stable B-containing clusters at a high B concentration region in Si, resulting in decrease in the B activation ratio in Si layer.\",\"PeriodicalId\":205070,\"journal\":{\"name\":\"2010 International Workshop on Junction Technology Extended Abstracts\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Workshop on Junction Technology Extended Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWJT.2010.5474981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Junction Technology Extended Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWJT.2010.5474981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

C集成到Si和SiGe中已成为现代高性能CMOSFET技术的关键。原因是C原子在应变Si薄膜的生长和控制掺杂原子在Si和SiGe层中的扩散方面有显著的作用。本文描述了C原子对应变Si和SiGe薄膜生长的贡献,以及B在Si中的活化和扩散。在C注入后退火和RP-CVD的SiGe:C外延生长中,间隙C原子抑制了应变Si:C和SiGe薄膜的外延生长。抑制C掺杂引起的局域应变变化和局域C原子成功地获得了具有高取代浓度的高结晶度应变Si:C和SiGe:C薄膜。A - B在Si中的活化比随掺入C浓度的不同而变化,在C和B浓度范围内变化较大。此外,C原子促进了Si中高B浓度区域稳定含B团簇的生长,导致Si层中B活化比降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contributionxc of carbon to growth of strained silicon, dopant activation and diffusion in silicon
C incorporation into Si and SiGe has become essential in modern high-performance CMOSFET technology. The reason is that C atom is markedly useful in growing strained Si film and controlling diffusion of dopant atoms in Si and SiGe layers. In this paper, contribution of C atoms to the growth of strained Si and SiGe films, the activation and the diffusion of B in Si are described. Interstitial C atoms inhibit an epitaxial growth of strained Si:C and SiGe films in both case for the C implantation followed by annealing and for the epitaxial growth of SiGe:C by RP-CVD. Suppressions of the localized change in strain caused by C incorporation and the localized C atoms successfully achieve a high-crystallinity strained Si:C and SiGe:C films with a high substitutional concentration. A B activation ratio in Si varies depending on incorporated C concentration in the wide range of C and B concentration. Furthermore, C atoms enhance the growth of stable B-containing clusters at a high B concentration region in Si, resulting in decrease in the B activation ratio in Si layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信