基于Moodle日志中学习材料使用情况预测学生期末考试成绩

Suzana Marija Dunatov, Kristian Kasalo, Anamaria Lovrinčević, Jelena Maljković, Antonela Prnjak
{"title":"基于Moodle日志中学习材料使用情况预测学生期末考试成绩","authors":"Suzana Marija Dunatov, Kristian Kasalo, Anamaria Lovrinčević, Jelena Maljković, Antonela Prnjak","doi":"10.23919/softcom55329.2022.9911477","DOIUrl":null,"url":null,"abstract":"This paper presents the use of data mining to predict students' final exam grades. We used the data collected from the Moodle platform of the IT course (the University of Split) and compared six classification methods: Decision Tree Classification., k-Nearest Neighbor Classifier., Logistic Regression., Naive Bayes., Random Forest., and Support Vector Machine. Using those methods and Moodle Logs., we aimed to predict the ultimate success in the chosen course. To achieve better accuracy., we evaluated all available and filtered data to determine which algorithms were the most accurate.","PeriodicalId":261625,"journal":{"name":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Students'Final Exam Grades Based on Learning Material Usage extracted from Moodle Logs\",\"authors\":\"Suzana Marija Dunatov, Kristian Kasalo, Anamaria Lovrinčević, Jelena Maljković, Antonela Prnjak\",\"doi\":\"10.23919/softcom55329.2022.9911477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the use of data mining to predict students' final exam grades. We used the data collected from the Moodle platform of the IT course (the University of Split) and compared six classification methods: Decision Tree Classification., k-Nearest Neighbor Classifier., Logistic Regression., Naive Bayes., Random Forest., and Support Vector Machine. Using those methods and Moodle Logs., we aimed to predict the ultimate success in the chosen course. To achieve better accuracy., we evaluated all available and filtered data to determine which algorithms were the most accurate.\",\"PeriodicalId\":261625,\"journal\":{\"name\":\"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/softcom55329.2022.9911477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/softcom55329.2022.9911477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了使用数据挖掘来预测学生的期末考试成绩。我们使用从IT课程(斯普利特大学)的Moodle平台收集的数据,比较了六种分类方法:决策树分类。, k近邻分类器。逻辑回归。朴素贝叶斯。兰登森林。和支持向量机。使用这些方法和Moodle日志。,我们的目标是预测所选课程的最终成功。以达到更好的准确性。,我们评估了所有可用的数据并过滤了数据,以确定哪种算法最准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Students'Final Exam Grades Based on Learning Material Usage extracted from Moodle Logs
This paper presents the use of data mining to predict students' final exam grades. We used the data collected from the Moodle platform of the IT course (the University of Split) and compared six classification methods: Decision Tree Classification., k-Nearest Neighbor Classifier., Logistic Regression., Naive Bayes., Random Forest., and Support Vector Machine. Using those methods and Moodle Logs., we aimed to predict the ultimate success in the chosen course. To achieve better accuracy., we evaluated all available and filtered data to determine which algorithms were the most accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信