基于FFT和MUSIC技术的感应电机断条故障检测的比较研究

Bensaoucha Saddam, A. Aissa, Bessedik Sid Ahmed, Teta Ali
{"title":"基于FFT和MUSIC技术的感应电机断条故障检测的比较研究","authors":"Bensaoucha Saddam, A. Aissa, Bessedik Sid Ahmed, Teta Ali","doi":"10.1109/CCEE.2018.8634488","DOIUrl":null,"url":null,"abstract":"The purpose of the current study is to detect the squirrel cage induction machine under the Broken Rotor Bars fault (BRBs). In this context, most of the studies were starting by using the Fast Fourier Transform (FFT) technique and applied to the various signals extracted from the motor as the stator phases currents. Unfortunately, FFT technique has some drawbacks such as suffering from the spectral leakage, also, it needs large data points to give clear results about the state of the machine. In addition, most of the induction motors are using speed control devices (the inverters), these devices reduce the effectiveness of FFT because it leads to the appearance of an additional harmonics, and it produces a further spectrum noises. To overcome these limitations, the Multiple Signal Classification (MUSIC) algorithm have been applied to replace the FFT. In particular, MUSIC algorithm allows to minimize the computation of the signal data without losing its diagnostic effectiveness, on the other hand, this technique allows to remove the noise that accompanies the signal. In this paper, the simulation results evidence the robustness of the MUSIC technique to detect the BRBs when the machine is operating under different conditions.","PeriodicalId":200936,"journal":{"name":"2018 International Conference on Communications and Electrical Engineering (ICCEE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparative Investigation of Broken Bar Fault Detectability in Induction Motor Through FFT and MUSIC Techniques\",\"authors\":\"Bensaoucha Saddam, A. Aissa, Bessedik Sid Ahmed, Teta Ali\",\"doi\":\"10.1109/CCEE.2018.8634488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the current study is to detect the squirrel cage induction machine under the Broken Rotor Bars fault (BRBs). In this context, most of the studies were starting by using the Fast Fourier Transform (FFT) technique and applied to the various signals extracted from the motor as the stator phases currents. Unfortunately, FFT technique has some drawbacks such as suffering from the spectral leakage, also, it needs large data points to give clear results about the state of the machine. In addition, most of the induction motors are using speed control devices (the inverters), these devices reduce the effectiveness of FFT because it leads to the appearance of an additional harmonics, and it produces a further spectrum noises. To overcome these limitations, the Multiple Signal Classification (MUSIC) algorithm have been applied to replace the FFT. In particular, MUSIC algorithm allows to minimize the computation of the signal data without losing its diagnostic effectiveness, on the other hand, this technique allows to remove the noise that accompanies the signal. In this paper, the simulation results evidence the robustness of the MUSIC technique to detect the BRBs when the machine is operating under different conditions.\",\"PeriodicalId\":200936,\"journal\":{\"name\":\"2018 International Conference on Communications and Electrical Engineering (ICCEE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Communications and Electrical Engineering (ICCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCEE.2018.8634488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Communications and Electrical Engineering (ICCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCEE.2018.8634488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究的目的是检测鼠笼式感应电机的断转子故障(BRBs)。在这种情况下,大多数研究都是从使用快速傅里叶变换(FFT)技术开始的,并应用于从电机中提取的各种信号作为定子相电流。然而,FFT技术存在频谱泄漏等缺点,并且需要大量的数据点才能给出关于机器状态的清晰结果。此外,大多数感应电机都使用速度控制装置(逆变器),这些装置降低了FFT的有效性,因为它会导致额外谐波的出现,并产生进一步的频谱噪声。为了克服这些限制,多信号分类(MUSIC)算法被用来取代FFT。特别地,MUSIC算法允许在不失去其诊断有效性的情况下最小化信号数据的计算,另一方面,该技术允许去除伴随信号的噪声。仿真结果证明了MUSIC技术在不同工况下检测brb的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Investigation of Broken Bar Fault Detectability in Induction Motor Through FFT and MUSIC Techniques
The purpose of the current study is to detect the squirrel cage induction machine under the Broken Rotor Bars fault (BRBs). In this context, most of the studies were starting by using the Fast Fourier Transform (FFT) technique and applied to the various signals extracted from the motor as the stator phases currents. Unfortunately, FFT technique has some drawbacks such as suffering from the spectral leakage, also, it needs large data points to give clear results about the state of the machine. In addition, most of the induction motors are using speed control devices (the inverters), these devices reduce the effectiveness of FFT because it leads to the appearance of an additional harmonics, and it produces a further spectrum noises. To overcome these limitations, the Multiple Signal Classification (MUSIC) algorithm have been applied to replace the FFT. In particular, MUSIC algorithm allows to minimize the computation of the signal data without losing its diagnostic effectiveness, on the other hand, this technique allows to remove the noise that accompanies the signal. In this paper, the simulation results evidence the robustness of the MUSIC technique to detect the BRBs when the machine is operating under different conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信