多元时间序列的距离函数选择

Gleb Morgachev, A. Goncharov, V. Strijov
{"title":"多元时间序列的距离函数选择","authors":"Gleb Morgachev, A. Goncharov, V. Strijov","doi":"10.1109/IC-AIAI48757.2019.00021","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of optimal distance function selection to optimize the distance between multivariate time series. The dynamic time warping method of univariate time-series defines the warping path and uses its cost as the distance function. To find this path it uses various pairwise distances between time-series. This work examines a generalization of the time warping algorithm in case of multivariate time-series. The novelty of the paper is the comparison of various metrics between the multivariate values of time-series. The distances induced by L1, L2 norms and cosine distances are compared. This work also proposes the multivariate adaptation of the optimized time warping algorithm. The experiment runs subsequence search and clustering problems for multivariate time-series. The given cost functions are evaluated on three data sets: two data sets with labeled physical human activity data from wearable devices and coordinates and the pressing force in the process of writing characters.","PeriodicalId":374193,"journal":{"name":"2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance Function Selection for Multivariate Time-Series\",\"authors\":\"Gleb Morgachev, A. Goncharov, V. Strijov\",\"doi\":\"10.1109/IC-AIAI48757.2019.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problem of optimal distance function selection to optimize the distance between multivariate time series. The dynamic time warping method of univariate time-series defines the warping path and uses its cost as the distance function. To find this path it uses various pairwise distances between time-series. This work examines a generalization of the time warping algorithm in case of multivariate time-series. The novelty of the paper is the comparison of various metrics between the multivariate values of time-series. The distances induced by L1, L2 norms and cosine distances are compared. This work also proposes the multivariate adaptation of the optimized time warping algorithm. The experiment runs subsequence search and clustering problems for multivariate time-series. The given cost functions are evaluated on three data sets: two data sets with labeled physical human activity data from wearable devices and coordinates and the pressing force in the process of writing characters.\",\"PeriodicalId\":374193,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC-AIAI48757.2019.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-AIAI48757.2019.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了多变量时间序列间距离的最优距离函数选择问题。单变量时间序列的动态时间翘曲方法定义了翘曲路径,并以其代价作为距离函数。为了找到这条路径,它使用了不同时间序列之间的成对距离。本文研究了多元时间序列情况下时间翘曲算法的泛化。本文的新颖之处在于对时间序列的多变量值之间的各种度量进行比较。比较了L1范数、L2范数和余弦距离引起的距离。本文还提出了优化后的时间规整算法的多变量自适应。实验运行了多变量时间序列的子序列搜索和聚类问题。给定的成本函数在三个数据集上进行评估:两个数据集带有可穿戴设备和坐标标记的物理人类活动数据,以及书写字符过程中的压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance Function Selection for Multivariate Time-Series
This paper investigates the problem of optimal distance function selection to optimize the distance between multivariate time series. The dynamic time warping method of univariate time-series defines the warping path and uses its cost as the distance function. To find this path it uses various pairwise distances between time-series. This work examines a generalization of the time warping algorithm in case of multivariate time-series. The novelty of the paper is the comparison of various metrics between the multivariate values of time-series. The distances induced by L1, L2 norms and cosine distances are compared. This work also proposes the multivariate adaptation of the optimized time warping algorithm. The experiment runs subsequence search and clustering problems for multivariate time-series. The given cost functions are evaluated on three data sets: two data sets with labeled physical human activity data from wearable devices and coordinates and the pressing force in the process of writing characters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信