P. Gasnier, J. Willemin, J. Chaillout, C. Condemine, G. Despesse, S. Boisseau, Guillaume Gouvernet, C. Barla
{"title":"高压压电能量采集的功率转换与集成电路结构","authors":"P. Gasnier, J. Willemin, J. Chaillout, C. Condemine, G. Despesse, S. Boisseau, Guillaume Gouvernet, C. Barla","doi":"10.1109/NEWCAS.2012.6329035","DOIUrl":null,"url":null,"abstract":"Using harvesting energy to extend Wireless Sensor Nodes (WSN) operating life or even supply them, has become a topic of growing interest over the last decades. This paper presents the architecture of a fully autonomous Integrated Circuit which efficiently harvests energy from low frequency mechanical stresses. This circuit uses a high voltage piezoelectric transducer and provides energy to a storage element (battery or capacitor) at lower voltage (2.8 to 3.4V). We propose an innovative way to extract the electrostatic energy by using a modified Flyback topology and multiple magnetic transfers. Measurements show that our solution increases the energy transfer with a gain of 15% compared to the classical technique. We show that this work improves the efficiencies of both power and control stages. Finally, the control circuit of the Flyback converter will perform a self-starting operation from an empty energy storage element and is currently being designed in AMS0.35 CMOS technology.","PeriodicalId":122918,"journal":{"name":"10th IEEE International NEWCAS Conference","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Power conversion and integrated circuit architecture for high voltage piezoelectric energy harvesting\",\"authors\":\"P. Gasnier, J. Willemin, J. Chaillout, C. Condemine, G. Despesse, S. Boisseau, Guillaume Gouvernet, C. Barla\",\"doi\":\"10.1109/NEWCAS.2012.6329035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using harvesting energy to extend Wireless Sensor Nodes (WSN) operating life or even supply them, has become a topic of growing interest over the last decades. This paper presents the architecture of a fully autonomous Integrated Circuit which efficiently harvests energy from low frequency mechanical stresses. This circuit uses a high voltage piezoelectric transducer and provides energy to a storage element (battery or capacitor) at lower voltage (2.8 to 3.4V). We propose an innovative way to extract the electrostatic energy by using a modified Flyback topology and multiple magnetic transfers. Measurements show that our solution increases the energy transfer with a gain of 15% compared to the classical technique. We show that this work improves the efficiencies of both power and control stages. Finally, the control circuit of the Flyback converter will perform a self-starting operation from an empty energy storage element and is currently being designed in AMS0.35 CMOS technology.\",\"PeriodicalId\":122918,\"journal\":{\"name\":\"10th IEEE International NEWCAS Conference\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th IEEE International NEWCAS Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2012.6329035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International NEWCAS Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2012.6329035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power conversion and integrated circuit architecture for high voltage piezoelectric energy harvesting
Using harvesting energy to extend Wireless Sensor Nodes (WSN) operating life or even supply them, has become a topic of growing interest over the last decades. This paper presents the architecture of a fully autonomous Integrated Circuit which efficiently harvests energy from low frequency mechanical stresses. This circuit uses a high voltage piezoelectric transducer and provides energy to a storage element (battery or capacitor) at lower voltage (2.8 to 3.4V). We propose an innovative way to extract the electrostatic energy by using a modified Flyback topology and multiple magnetic transfers. Measurements show that our solution increases the energy transfer with a gain of 15% compared to the classical technique. We show that this work improves the efficiencies of both power and control stages. Finally, the control circuit of the Flyback converter will perform a self-starting operation from an empty energy storage element and is currently being designed in AMS0.35 CMOS technology.