物体跟踪从立体序列使用粒子滤波

G. Cătălin, S. Nedevschi
{"title":"物体跟踪从立体序列使用粒子滤波","authors":"G. Cătălin, S. Nedevschi","doi":"10.1109/ICCP.2008.4648386","DOIUrl":null,"url":null,"abstract":"In this paper we present a vehicle tracking particle filter system based on gray histogram and sparse optical flow detection in stereo images. The proposed approach is based on the fact that for 2D tracked features we can compute their 3D correspondences, which are used for particle filter tracking improvement. The goal of this paper is to show how vision based particle filter tracking, optical flow and stereovision can be integrated to work together in order to achieve a robust object tracking algorithm.","PeriodicalId":169031,"journal":{"name":"2008 4th International Conference on Intelligent Computer Communication and Processing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Object tracking from stereo sequences using particle filter\",\"authors\":\"G. Cătălin, S. Nedevschi\",\"doi\":\"10.1109/ICCP.2008.4648386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a vehicle tracking particle filter system based on gray histogram and sparse optical flow detection in stereo images. The proposed approach is based on the fact that for 2D tracked features we can compute their 3D correspondences, which are used for particle filter tracking improvement. The goal of this paper is to show how vision based particle filter tracking, optical flow and stereovision can be integrated to work together in order to achieve a robust object tracking algorithm.\",\"PeriodicalId\":169031,\"journal\":{\"name\":\"2008 4th International Conference on Intelligent Computer Communication and Processing\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 4th International Conference on Intelligent Computer Communication and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2008.4648386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 4th International Conference on Intelligent Computer Communication and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2008.4648386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种基于灰度直方图和稀疏光流检测的立体图像车辆跟踪粒子滤波系统。提出的方法是基于二维跟踪特征可以计算它们的三维对应关系,用于改进粒子滤波跟踪。本文的目标是展示如何基于视觉的粒子滤波跟踪,光流和立体视觉可以集成在一起工作,以实现鲁棒的目标跟踪算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object tracking from stereo sequences using particle filter
In this paper we present a vehicle tracking particle filter system based on gray histogram and sparse optical flow detection in stereo images. The proposed approach is based on the fact that for 2D tracked features we can compute their 3D correspondences, which are used for particle filter tracking improvement. The goal of this paper is to show how vision based particle filter tracking, optical flow and stereovision can be integrated to work together in order to achieve a robust object tracking algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信